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SECTION I

INTRODUCTION

1.1 THE PROBLEM

Use of filamentary composites in aircraft components has been steadily growing.

For satisfactory design it is imperative that the service behavior and the ultimate load

capacity of the components be well understood. Experimental procedures cannot

realistically be expected to cover all possible stress configurations for all possible

designs. Analytical models of material behavior, which can be used to predict struciural

behavior under a variety of service conditions, are necessary to develop a firm basis

for design.

1.2 RESEARCH OUTLINE

The purpose of the research described in this report was to develop reliable and

efficient computational procedures for prediction of deformation and stress causing

cumulative damage in structural components made of composite laminates. The proposed

models were to be verified in an appropriate manner.

The work performed under the research program consisted primarily of analytical

studies involving mathematical modelling of behavior of laminated plates under

combined bending and stretching and of free-edge delamination specimens subjected to

uniform extension.

The models developed were designed to be capable of representing simultaneous

occurrence of flexure and stretching and have the capability of predicting interlaminar

normal and shear stresses.

• • • mm • •I



Review of available literature pointed out the inadequacy of the existing theories

of mechanics of laminated composites. Theories based on assumption of a linear or

higher order variation of the in-plane and the transverse components of displacement

over the thickness of the laminate have been known to be incapable of representing

local effects. Even the "layerwise" or discrete laminate theory could not properly

predict interlayer stresses and there was no satisfactory procedure to allow for shear

deformation effects. Pagano's [1978] assumed stress distribution approach is theoretically

sound but its use to find numerical solutions to specific problems was limited to only

a few layers. The finite element methods available could not accurately model the

complete stress state especially at interfaces and free edges.

The research reported herein attempts to plug some of the gaps. An hierarchical

approach to the construction of a sequence of refined discrete laminate theories to

model combined bending and stretching of laminated plates, based upon assumed

displacement patterns was developed. Coupled constitutive equations for force resultants

were derived using an extension of Reissner's variational procedure. This eliminates the

need for ad hoc "correction factors" to allow properly for shear. Pagano's theory was

restated in a self-adjoint form with a reduction in the number of free field variables.

This renders the approach convenient for variational formulation and application of

finite element techniques. For analysis of free-edge delamination specimens, continuous

traction finite elements were developed. Test programs, for which adequate

documentation was available, were carefully examined. The predicted modes of failure

and progressive damage sequence were compared with the test data. Figure 1 shows

the various components of the research program and the individual reports, listed in

Appendix B, wherein each is fully documented.

2
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1.3 STRUCTURE OF THE REPORT

This report describes the overall research effort and the principal results of the

investigation. We first present, in Section I1, a summary of previous work on

modelling behavior of composite laminates. Section III contains a summary of the basic

equations of linear elasticity and their specialization to the case of free-edge

delamination specimens. Section IV presents an hierarchical approach to theory of

laminated plates using assumed displacement patterns. Section V gives a summary of

the new discrete laminate theories, developed in the present research program, allowing

for coupled constitutive equations for the force resultants. Section VI contains a

restatement of Pagano's assumed stress distribution theory. Section VII points out the

self-adjoint form, useful for variational formulation, of laminate theories. The governing

equations, for the collection of laminate theories, including the field and interface

continuity equations are stated in a self-adjoint form and general variational principles

are proposed. Extensions of the general formulation, to admit relaxation of continuity

requirements on some of the field variables, are indicated as well as specializations to

reduce the number of free field variables by requiring some of them to identically

satisfy some of the field equations. This is often necessary to make the problem

computationally tractable. Section VIII presents a summary of finite element studies.

Appendix A contains a summary of the general procedure for setting up variational

formulations for linear coupled problems. Appendix B lists the publications that have

resulted from the research effort.
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SECTION II

REVIEW OF PREVIOUS WORK

2.1 INTRODUCTION

This section briefly reviews previous work on modelling behavior of composite

laminates with a view to identifying cumulative damage processes. Two-dimensional

representation of the three-dimensional physical problem, and finite element solution

procedures applied to evaluation of stress and deformation in composite laminates are

discussed. Detailed reviews are available in the literature. As examples one may cite

the recent reviews by Reddy [1990] and Hanna [1990]. The former is in the nature of

a survey while the latter presents details of various theories along with applications.

2.2 TWO-DIMENSIONAL REPRESENTATION

2.2.1 Introduction

In order to simplify solution of the three-dimensional problem of stresses and

deformations in composite laminates, it is desirable to take note of certain material and

geometric symmetries that might exist and the fact that in most applications the

thickness of the laminate is very small in comparison with the lateral dimensions.

For homogeneous plates, it is customary to make the dependence of the field variables

upon the transverse coordinate explicit. An assumption is usually made for the pattern

of variation of the displacement or the stress components with this coordinate. For the

case of free-edge delamination specimens under uniform axial strain, the

three-dimensional problem reduces to a pseudo-two-dimensional one because of the



dependence upon the longitudinal coordinate x, being eliminated. Specialization of the

thin plate theories to the case of free-edge delamination specimens makes the problem

one-dimensional.

2.2.2 Displacement-based Theories.

Existing displacement-based theories, as applied to laminated composite plates, can be

classified into three categories, viz.,

1. Classical thin plate theory and the first order shear deformation theory.

2. ligher order theories.

3. Discrete laminate theories.

The first two categories assume the dependence of the components of the

displacement vector to be polynomials in the coordinate normal to the surface of the

plate. The third category treats each lamina as a homogeneous anisotropic plate and

enforces continuity of components of traction and displacement at the interfaces.

2.2.2.1 Classical Thin Plate Theory [CPT.

A theory for a laminate was presented by Reissner and Stavsky [1961] for a

two-layer system. Stavsky [1961] extended it to a multi-layer plate. Dong et al. [1962]

extended the concepts to the analysis of anisotropic laminated shells. This theory

assumes the in-plane components of displacement to be linear in the transverse

coordinate and the out-of-plane component to be independent of it. Also, the rotation of

any cross-section is assumed to be equal to the rotation of the tangent at the

midsurface. This is equivalent to ignoring shear deformation and assuming the thickness

of the plate to remain constant. The transverse strain is zero by the displacement

asumptions and the t.ansverse stress is also assumed zero. Implying infinite shear

rigidity, it leads to an overestimation of plate stiffness resulting in underestimation of

transverse deflection [Whitney, 1969; Pagano, 1969, 1970; Srinivas and Rao, 19701 The

6



effect is more pronounced in composite laminates due to the low ratio of shear

modulus to Young's modulus. Also, the theory cannot predict local and interfacial

behavior of the laminate which is critical to effectively model damage associated with

delamination.

2.2.2.2 First Order Shear Deformation Theory [FSDT].

In the first order shear deformation theory [e.g., Yang et al., 1966; Whitney and

Pagano, 19701 the rotation of the cross-sections is allowed to be different from the

rotation of the tangent at the midsurface. This is an extension of Reissner's [1944,

1945] and Mindlin's [1951] ideas. It can allow for shear deformation and predict lateral

deflections and fundamental frequencies of vibration reliably but does not give good

quantitative results [Whitney 1969; Srinivas and Rao, 1970] for the transverse shear

stress distribution. According to Lo et al. [1977], "Despite the increased generality of the

shear deformation theory, the related flexural stress distributions show little

improvement over those of the classical plate theory." To improve accuracy, Whitney

and Pagano [1970] and Kulkarni and Pagano [1972] suggested use of a suitable shear

correction factor K. However, the value of this factor was not a fixed constant

[Whitney and Pagano 1970; Kulkarni and Pagano 1972] and different values were seen

to be optimal for different layups and for various quantities of interest in the

particular problem. Whitney and Pagano [1970] stated: 'The evaluation of K in a

specific problem depends on either the exact elasticity solution of the problem or

experimental evidence. Owing to the scarcity of such information, we can say little

about the evaluation of K at the present time." In Mindlin's approach [19511, thickness

shear modes obtained by the approximate theory and by an exact elasticity solution

for straight-crested flexural waves in an infinite plate were matched. Yang et al.

[1966] applied the general theory to propagation of plane strain waves of

Rayleigh-Lamb type in specific two-layer isotropic plate and showed that the value of
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K depends upon the material properties of the layered plate. Nelson and Lorch [19741

presented a refined nine mode theory for laminated composite plates. They noted 41

independent nonzero stiffness quantities. Invariance of strain energy under translation of

the reference surface limited the number of stiffness correction factors to a maximum

of nine including two "in-plane" stiffness factors. An alternative approach has been to

enforce equality of the shear energy expressions from an approximate laminate theory

and from a stress field satisfying equilibrium. Chow [1971] used this method to obtain

the shear correction factor for an orthotropic laminate of symmetric construction.

Whitney [1973b] extended it to the case of an asymmetric orthotropic laminate. The

approximate stress field was obtained by assuming linear variation of the in-plane

stresses over the thickness of the plate and using the equilibrium equations to solve

for the remaining comx,nents. Bert [1984] used this procedure to obtain the shear

correction factor for a laminate version of Levinson's higher order theory. Reissner

[1972, 1979] presented a procedure similar to the one used for homogeneous plates to

obtain the transverse shear stiffness. Yang et al. [1966] also assumed the transverse

direct stress component to be zero. Whitney [1970] assumed the integral of this stress

to be zero over each layer and applied his theory to problems of cylindrical bending.

2.2.2.3 Higher Order Theories [HOT].

Whitney and Sun [1973a] proposed a higher order theory with quadratic

polynomial functions for the in-plane displacement components and linear for the

transverse in order to include the first antisymmetric shear mode and allow for

nonzero normal strain in the transverse direction. A shear correction factor was used.

In another application, to laminated shells, Whitney and Sun [1974] assumed the

in-plane displacements to be linear in the transverse coordinate and the transverse

displacement to be cubic. In both theories, a shear correction factor was used to

enhance accuracy. Nelson and Lorch [1974] employed quadratic expressions for all the
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components of displacement. Lo et al. [19771 used cubic functions for the in-plane

displacement components and quadratic for the transverse to have the transverse shear

contributions from the two systems to be of the same order in the transverse

coordinate. Levinson [1980] proposed using a cubic polynomial for the in-plane

displacement components and constant transverse deflection for an homogeneous, isotropic

plate. To satisfy the stress-free conditions on the faces of the plate, the quadratic term

had to be dropped and the coefficient of the cubic term was related to that of the

first order term and the transverse component of displacement. Bert [1984] extended

this idea to laminates. Noting that the equilibrium equations in Levinson's formulation

were inconsistent in the sense of a variational principle, Reddy [1984] derived the field

equations from a virtual work equality. This simple higher order theory involves the

same number of variables as the first order shear deformation theory but gives

parabolic transverse shear strain variation through the thickness of the plate and also

satisfies the stress-free conditions at the top and the bottom faces. This theory was

used [Bert 1984; Reddy 19841 to analyze angle-ply and cross-ply laminated plates and

shown to be more accurate than the first order theory. Table 1 summarizes some of

the assumed displacement fields used in higher order theories. Use of higher order

terms in the representation of displacement components increases the accuracy but the

additional terms introduced into the problem formulation increase the cost and

complexity of the solution process. Furthermore, the polynomial representation over the

entire thickness of the plate cannot properly model the discontinuities in displacement

gradients that generally exist at the interfaces between layers with different orientation

of the material axes. Therefore, shear deformable theories, whether FSDT or higher

order, cannot take into account the effects of local deformation accurately. This

difficulty is more pronounced when the shear rigidities of the constituent layers are

quite different [Whitney and Sun, 1973; Lo et al. 1977]. Also, these cannot satisfy
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Fable 1: TiHEORIES ALLOWING FOR SHEAR DEFORMATION

Reference In-plane Out-of-plane Normal Correction Force
Displacement Displacement Strain Factors Resultants

Reissner Linear Constant Zero 1 8
[1945] 4 1

Mindlin Linear Constant Zero 1 8
[1951) 4 1

Naghdi Linear Quadratic
[1957] 4 3

Whitney Quadratic Linear Constant 5 14
[1973] 6 2

Whitney Linear Quadratic Linear
[1974] 4 3

Nelson Quadratic Quadratic Linear < 9 17
[1974] 6 3

Lo Cubic Quadratic Linear 20
[1977] 8 3

Levinson Cubic Constant Zero 1 8
[1980) 4 1

Reddy Cubic Constant Zero 13
[1984] 6 1
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interlayer traction continuity. None of the existing higher order theories based on

assumed displacements can properly model interfacial stresses, especially near the

traction-free edges.

2.2.2.4 Discrete Laminate Theories [DLT].

In a laminated composite plate, the deformation depends upon the stacking sequence

of layers and upon the material properties of each [Sun and Whitney, 1973. In order

to allow for this properly, discrete laminate theories in which a layerwise linear

variation of the in-plane displacement components is employed have been proposed [e.g.,

Sun and Whitney, 1973; Srinivas, 1973; Seide, 1980]. Typically, each layer is treated as

an homogeneous, anisotropic plate and the governing equations of all these plates are

coupled through interlaminar continuity equations. Evidently, to achieve greater accuracy

of representation, it is possible to divide each lamina into a number of layers. Srinivas

[1973] assumed a piecewise linear variation in the in-plane displacements with respect

to the transverse coordinate and the transverse displacement was assumed to be constant

over the thickness. This gave 2N+3 field equations for the N layers. The theory did

not enforce continuity of traction across interfaces. Sun and Whitney [1973] used

kinematic assumptions similar to Srinivas. However, enforcement of continuity of shear

stresses at interfaces reduced the number of field variables to the same as in the first

order shear deformation theory regardless of the number of layers. The degree of the

differential equation was seen to increase with N, the number of layers. Seide [1980,

unlike Srinivas [1973 and Sun and Whitney [1973], did not use Hamilton's principle

but directly combined the equilibrium equations of the layers using continuities of

traction and displacement at the interfaces.

Murakami [1986] proposed a theory in which layerwise zigzag functions were

added to the in-plane displacements adopted in the FSDT to account for local shear

deformation effects. This theory was shown to yield more accurate in-plane stress

predictions for symmetrically laminated thick orthotropic plates. Reddy [1987, 1989]
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proposed a layerwise theory as a generalization of two-dimensional theories by writing

displacement components as piecewise smooth functions of the transverse coordinate in

line with finite element concepts.

2.2.3 Stress-based Theories.

Pagano [1977a,b; 1978a,b] proposed a theory which assumed linear variation, with

respect to the transverse coordinate, of the in-plane stresses. The remaining stress

components were derived from the three-dimensional equilibrium equations. A

variational principle was used to develop constitutive equations relating force resultants

to "generalized displacements." Continuity of tractions as well as displacements at

interfaces was explicitly satisfied. The boundary value problem was stated in terms of

the generalized displacements and interfacial tractions. The only approximation made in

this theory is the assumption of linear variation of the in-plane stress components over

each layer thickness. As each layer can be subdivided into as many sublayers as one

wishes, the theory ought to lead to a sequence of solutions of the problem which

would converge to the exact solution with reduction in the sublayer thickness.

In Pagano's theory, the number of simultaneous partial differential equations to be

solved is 13N. This has been the principle difficulty in applying this theory to

practical problems. To overcome this, Pagano and Soni [1983] proposed a "global-local"

model in which a laminate would be divided into a local zone and a global portion. A

higher order displacement-based theory would be used to solve the global problem and

then Pagano's theory would be applied to the local zone for better accuracy in that

region.

Green and Naghdi [1981, 19821 proposed a generalized discrete laminate theory

incorporating thermal and dynamical effects. Table 2 gives a comparison of the

discrete laminate theories.
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Table 2: I)SCRETE LAMINATE THEORIES

...................................................................

Reference Type In-plane Transverse Field
Displacements Displacement Variables

-- -_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Seide Displacement Linear Constant 2N + 3
[1980]
...................................................................

Sun and Whitney Displacement Linear Constant 2N + 3
[19731
...................................................................

Srinivas Displacement Linear Constant 211 + 3
[1973]
...................................................................

Pagano Stress Linear Quadratic 131q
[1977,1978] Shear

Cubic Nformal
Stress

...................................................................
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2.2.4 Free-Edge Delamination Specimens.

Free-edge delamination specimens are tested under uniform axial strain. This implies

that the axial component of displacement is linear in the longitudinal coordinate. Away

from the grips, it is reasonable to assume that the other two displacement components

are independent of the longitudinal coordinate. This reduces the three-dimensional

problem to one involving three variables (components of the displacement vector) but

these are functions of only two independent spatial variables, viz., the transverse

coordinate and the "other" of the in-plane coordinates.

Specialization of the plate theories, described earlier, to the case of a free-edge

delamination specimen reduces the dimension of the problem from two to one. Thus,

the dependence of various field variables is on the transverse in-plane coordinate only.

2.3 FINITE ELEMENT MODELLING.

Even highly simplified models of laminated composites lead to very complex sets

of equations. Exact solutions to these equations have been possible only for cases of

simplest geometry and load configurations. Use of numerical methods to obtain

approximate solutions to the field equations is thus imperative. Both finite difference

and finite element methods have been employed.

Hulbert and Rybicki [1971] used a boundary point least squares technique. Pipes

and Paganao [19701 used the finite difference method. Most of the finite element

studies have been for plane stress or three-dimensional models of composite laminates.

Rybicki [1971] used Maxwell's stress functions approximated as fifth degree Hermite

polynomials to get a stress field satisfying equilibrium. This gave 648 unknowns per

element. Minimization of the complementary energy was used to evaluate the

-oefficients for the stress functions. lsakson and Levy [1971] used a shear interlayer

element and a displacement-based formulation. Constant strain triangles were used to
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model the laminate layers. Wang and Crossman [1977a, 1977b] used constant strain

elements and studied a plane strain slice of an angle-ply laminate specimen. Rybicki

and Schmueser [19781 used Wilson's SAP IV program to carry out a three-dimensional

analysis based on eight-point "brick" isoparametric elements. Most investigators

confirmed Puppo and Evensen's [1970] and Pagano and Pipes [1973] findings. However,

Bar-Yoseph [1983] noted that Whitcomb et al.'s [1982] findings are in contradiction of

Pipes and Pagano's [1970] finite difference solution and the displacement-formulated

perturbation solution by Hsu and Ilerakovich [1977]. All of the analyses were based on

linear elastic material behavior and constant axial strain. None could allow for

cumulative damage. Nishioka and Atluri [1980, 1982] used an assumed stress approach.

Spilker and Chou [1980a,b] prese:ted a special purpose hybrid-stress multi-layer finite

element satisfying traction-free edge conditions exactly and applied it to a symmetric

cross-ply laminate. Mixed (displacement-stress) formulations have been attempted [e.g.,

Labbe et al, 1982].

To admit crack-tip singt:Earity into the analysis, special singularity elements have

been used for some tirre. Wang et al. [1975a, 1975b], and Wang and Mandell [1977]

used a two-dimensional hybrid stress element including a crack-tip singularity element

embedded in a matrix interlayer between plies of the laminate. Muskhelishvilli's

solution was the basis for the special element. Accuracy of one percent for the stress

intensity factor calculation wi', claimed. Ueng et al. [1977] applied this procedure to

study failure of a notched, unidirectional, boron-epoxy composite under simple tension

along the fibers and perpendicular to the notch. Raju et al. [1980] and Whitcomb et

al. [1982] tested the capability of the finite element method to solve for interlaminar

stress in composite laminates. It was felt that with sufficient refinement, the method

could give a highly accurate estimate of the interlayer stress field except in the two

elements closest to a singularity or discontinuity. These conclusions were based on use
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of 8-point "brick" (trilinear lagrangian) three-dimensional elements and 8-point

isoparametric quadrilateral plane strain elements. Stanton and Crain [1980] sought to

economize on the computer effort. Linear constraints were applied to tricubic

Lagrangian three-dimensional elements to get a lower order displacement along selected

axes while retaining the higher order variation in material properties and higher order

geometry. Transition elements were used to pass from discrete ply modelling to

composite laminate modelling. Raju and Crews [1981] used a polar mesh near the

intersection of the interface and the free edge along with a log-linear radial dist;ince

from the singular point. Bar-Yoseph [1982] presented a method based on composite

expansion and assumed stress approach. Wang and Slomiana [19821 introduced finite

elements allowing for fracture based on Griffith's criterion to simulate crack growth.

This is an extension of earlier work by Wang and Crossman [1977al All three modes

of crackin- were considered. Rybicki et al. [1977] used an energy release rate criterion

in finite element analysis of crack growth. Table 3 lists a comparison of various

methods used for numerical solution of the free-edge delamination specimen problem.

In order to set up finite element solution procedures, variational formulations are

generally used. For analysis of laminates, minimization of potential energy,

minimization of complementary energy, Reissner's mixed variational principle, hybrid

variational formulations, global-local formulations etc., have been used.

All the investigators report success with whatever method they adopted. Good

agreement with test data is claimed. However, it is noteworthy that, in general, no

mention is made of computational efficiency. It is well known that triangular elements

do not give good distribution of stress except in the simplest cases. Again, a small

number of trilinear elements will not give good stress distribution which could be used

as the basis for simulation of initiation and progresive growth of cracks and/or

delamination. It has also been noted [e.g., Chang 1981; Jenq 1982] that mixed
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Table 3: STRESS-DISTRIBUTION IN A FREE-EDGE L)ELAMINATION SPECIM4EN.

Reference Method of Analysis Stress Components

Puppo & Evensen Approximate Elastic Solution '... C, yy xz
[1970)

Pipes & Pagano Approximate Elastic Solutiono'X OY, -zay
[1974 1

Hsu & Herakovich Perturbation Technique az x'Oy
[1977]

Pagano Stress-Based (X'a3y zay X TX
[1978] Theory of Plates

Pagano & Soni Global-Local Model O- ,o 0-oy , U'z 'YZ w0,
(1983]

Pipes & Pagano Finite Difference 01Y' z X '
[1970]

W~ang & Crossman Finite Element C. ya zo Zc X TX
[1977a) Constant Strain Triangle

Finite Element
Whitcomb 8-Iloded Isoparametric .'Oy Uc.,0, -X
(1982) Element

Rybicki Finite Element Method 0,'C yaz ~z rz'OX
[1971] Equilibrium Stress Method

Spilker Finite Element Method ax,0 y Z'( Z TX,0'

[1980b] Hybrid Stress Model

Wlang & Yuan Finite Element U T0 T 0

(1983] Singular Hybrid Element
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(displacement-stress) formulations result in poorly conditioned matrices and the solutions

have spatially oscillatory errors. Most finite element formulations based on use of

special singularity elements can adequately predict onset of fracture in the vicinity of

the crack-tip but are not convenient for prediction of crack propagation and arrest.

Also, they cannot predict the initiation of fracture in an initially uncracked material.

Some work [e.g., Pryor and Barker 1970; Mawenya and Davies 1973; Hinton 1976;

Reddy 19821 has been done on flexure of composite laminates. In general, the finite

element interpolation along the transverse axis is chosen to follow one of the plate

theories. In-plane variation follows the usual finite element procedures. Lagrangian as

well as isoparametric interpolations have been used. Engblom and Ochoa [19851 used

through-the-thickness elements for restricted applications. Mawenya and Davies [1973]

used a layerwise model. Recently, Reddy [1982, 1987] and Kuppuswamy and Reddy

[1984] have used the layerwise theory for laminated plates.

2.4 THE PRESENT RESEARCH.

Review of the existing literature on the subject showed that a proper theory for

modelling bending and stretching behavior of composite laminate plates, with the

capability of providing reliable solutions for interlaminar stresses, was lacking. The

available theories were based ori a number of ad-hoc assumptions and were applicable

to only certain special situations. Pipes and Pagano [1970] pointed out that the

interlaminar normal stress is primarily responsible for delamination failures. It was

extremely important to develop adequate theoretical models which could be used to

predict stresses at the interfaces with the required degree of accuracy. Finite element

models ensuring continuity of tractions across material interfaces are rare. For plate

theories there was no concensus regarding consideration of shear deformation and most

theories did not satisfy interlayer continuity of tractions and were inadequate for study

of local effects causing damage. Pagano's theory, based on assumption of linear

18



variation of the in-plane stress components over each layer, has given excellent rcsults.

However, its application has been restricted to a few layers. It appeared necessary to

develop procedures which would permit application of Pagano's theory to multi-layer

laminate configurations. This led to the following lines of investigation for

development of the theoretical models:

1. Systematic development of models of combined bending and stretching of

plates properly allowing for interlayer continuity of tractions, including revi-

siting existing theories;

2. Finite element implementation of the theoretical models developed under (1)

above;

3. Development of finite element models for analysis of free-edge delamination

specimens.

Under item 1 above, an hierarchical approach to the construction of assumed

displacement type theories of laminated plates was identified. The constitutive

equations in each case were derived from a general variational principle. These theories

do not require the use of ad-hoc correction factors but directly and explicitly contain

the influence of the layup and the layer properties upon the constitutive relations.

Pagano's theory was restated in a form convenient for application of finite element

procedures. It was seen that the constitutive equations for this theory need not be

based upon any variational principle but could be derived directly by integrating the

material constitutive relations. The first order coupled shear deformation theory and the

restated Pagano's theory were implemented in finite element computer programs.

Additionally, approximation of a free-edge delamination specimen as a segment of an

annulus with a large radius was implemented in a finite element computer program. A

significant result was the development of continuous traction finite elements using a

cubic displacement representation for analysis of free-edge delamination specimens. In
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each case the influence of element size (mesh refinement) on accuracy was carefully

examined. Wherever possible, microcomputer versions of the codes were prepared. All

the computer codes were carefully documented. The codes have a modular structure to

permit easy update and enhancement in the future. The validity of the proposed

models was checked against available exact solutions and test data. The computer codes

were used to predict stresses and deformations in multi-layer free-edge delamination

specimens.
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SECTION III

EQUATIONS OF THREE-DIMENSIONAL LINEAR

ELASTICITY AND THEIR SPECIALIZATION TO

FREE-EDGE DELAMINATION SPECIMENS

3.1 INTRODUCTION.

We start by summarizing the well-known equations of three-dimensional linear

theory of elasticity. We shall then specialize these for the case of free-edge

delamination specimens allowing for the special geometry and loading configuration.

These consist of the fact that the specimens are uniformly stretched in the longtudinal

direction and that the laminate possesses certain symmetries.

3.2 THREE-DIMENSIONAL ELASTICITY.

3.2.1 Kinematics.

If, using a rectangular cartesian frame of reference, u, are the components of the

vector describing the displacement of an arbitrary particle in an elastic solid, the

cartesian components e,, of the infinitesimal strain tensor are given by

j-(u + u i
2 j J11

Here, and in the sequel, we use standard index notation. Roman indices take on the

range of values from 1 to 3. Summation on repeated indices is implied unless

otherwise indicated. A subscripted comma denotes differentiation with respect to the

spatial coordinate indicated by the subscript following the comma. Parentheses around a

pair of indices denote the symmetric p.rt of the quantity with respect to the two
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indices. Greek indices take on values I and 2. Parentheses around a single index

denote "no sum" on that index.

The strain tensor, defined by (1) is symmetric, i.e.

,, e13 , = U(j) (2)

3.2.2 Equilibrium.

if fi are the components of the body force vector acting upon an arbitrary unit

volume of the solid, the static equilibrium equations for the solid are:

o +f = 0 over R (3)

Here o', are the components of the symmetric Cauchy stress tensor, R is the deformed

configuration of the solid on which equilibrium is defined. However, for linear theory,

no distinction is made between the undeformed and the deformed state for the purpose

of defining the stress components and the equations of equilibrium. Often, the quantity

on the left-hand side of (3) is referred to as the "disequilibrium force vector." Using d,

to represent components of the disequilibrium force vector, their vanishing everywhere

implies pointwise equilibrium. However, if we consider the inner product

P = Id, g, dR (4)

the product vanishes for every bounded function g, if and only if the quantity d, is

zero almost everywhere. Further noting that any bounded function can be

approximated as closely as desired by a polynomial with rational coefficients, vanishing

of d, can be replaced by P = 0 for g,, a polynomial with rational coefficients and of

arbitrary degree in the spatial coordinates. This weak form is the basis of theories of

mechanical behavior of surface structures e.g., plates and shells. We shall refer to this

concept again in Section IV.
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3.2.3 Constitutive Relations.

For a linear elastic material, the constitutive relations have the form

0-ij = Eklij eki (5)

Here E,, are components of the isothermal elasticity tensor. Because of symmetry of

the strain tensor,

E ijkl -Ejikl (6)

If there are no body force couples, the stress tensor is symmetric. This leads to

Ejk = Ejlk (7)

Further, if it is assumed that the stress is independent of the strain path and an

energy density function of strain exists such that each component of the stress tensor

is the gradient of this function along the "corresponding" component of the strain

tensor,

Eijk] = Eklij (8)

Thus, the number of independent constants defining the elastic material reduces to 21.

For a material having symmetry about a plane the number reduces to 13 and, for an

orthotropic material, the number is 9. The relationship can then be written in the

form

00 = E e6 + E33QA e 33  (9)

03 2 E e (10)

a33 -- Ey633 eYb + E3333 e33

The inverse relationships are

e., =Cyf 0->6 + C033 0"33 (12)

e.3 =2 C y3a 3 (-y3  (13)

e (33 C yt33 -y 
+ 
C3333 0" 3 3  (14)
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3.3 SPECIALIZATION TO FREE-EDGE DELAMINATION

SPECIMENS.

3.3.1 The Free-Edge Delamination Specimen.

Figure 2 shows a symmetric laminate specimen under a uniform axial strain e,

For this case, away from the ends, the displacement field for any transverse section

(x1 =constant) has the following form [Pipes and Pagano 1970]

u1(x)=e0 x1 +U(x,,x 3) (15)

u,(x) =U2 (x2,x 3) (16)

and

u 3(x)= U 3 (x 2, x 3) (17)

3.3.2 Effect of Specimen Symmetries.

Symmetry of loading as well as geometry about the midplane (x3 =0) and

rotational symmetry about the axis x3 through the middle point result in the following

relationships:

U(x 2 , - x 3) =U(x 2 , x3) (18)

U 3(x 2 ',_ x3 ) - U 3 (x 2 ,x3) (19)

U2( - x0, x3 )= - U 2(x, x3) (20)

U 3 ( - x 2 x) U 3 (x 2 , x3) (21)

Using the chain rule of differentiation, (18), (19) and (21) yield

_U *(XX ) = U (x x) (22)
032 ' 3 &.3 2'

U3, 2(x,_ x3) = - U 3,2(x , x3) (23)

_U 3,2( -x 2 1 x3) = U3,2(x 2 ,x3) (24)

Setting x, =0 in (19), (22). and (23),

U 3(x 2 , 0) = 0 (25)
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e.

(a) Symmetric Laminate

z

(b) x~constant Plane

Figure 2: FREE-EDGE DELAMINATION SPECIMEN
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U 3 ,2 (x 2 , 0)= U 3(x2,0) 
= 0 (26)

Equation (26) also gives

(U3. 2 - U ,3)(x2,O) = 0 for all x 2  (27)

Equation (20) gives

U2(0,x 3) = 0 for all x3  (28)

and, as a consequence,

U 2.3(0, x 3)= for all x3  (29)

Equation (24) gives

U 3 ,2(,x 3)=O for all x3  (30)

Equation (29) along with (30) leads to

'23=0 for all x3 at x2 =0 (31)

and

( U3 2 - U2,3 )(ox) =)0 (32)

Summarizing, for the free-edge delamination specimen, the following constraints

apply:

U2(0, x =U 3(x ,0) 0 (33)

(U 3,2 -U 23) (0 ox3) = (U3,2 -U 3x)0 ) = 0 (34)

-Y2 3(x 2 , 0) = y' 2 3 (0, x 3 ) 0 (35)
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SECTION IV

EQUATIONS GOVERNING BENDING AND

STRETCHING OF PLATES

4.1 INTRODUCTION.

To reduce the three-dimensional problem of a plate to one in two dimensions, the

dependence of the field variables on the transverse coordinate is made explicit. This

involves assumptions regarding dependence of stress or displacement on the coordinate

X3 .

In the present research effort, using the discrete laminate concept, two approaches

were considered. In one, assumptions were made regarding displacement variation with

respect to the coordinate x3. An innovative component of the present effort was that

the constitutive relations were derived directly from a variational theorem using a

generalization of Reissner's work [1984]. This revealed the existence of a coupling

between the force resultants and deformations in various layers.

In the second approach, originally proposed by Pagano [1978], assumptions were

made regarding stresses which were required to be in pointwise equilibrium. The

stress-strain relations were satisfied pointwise as well. The strains were integrated using

appropriate weighting functions to yield constitutive relations for the force resultants

in terms of generalized displacements and their gradients. Continuity of displacements

as well as of tractions was enforced across interlayer surfaces. No assumptions were

necessary regarding dependence of the displacement components upon x3.

In this Section we summarize the first approach. Details are given in reports listed

as items B.1.1; 13.1.2 and dissertations listed as items B.4.2 and B.4.5 in Appendix B.
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The second approach is discussed in Section V.

4.2 GOVERNING EQUATIONS.

4.2.1 Kinematics.

In general, using a polynomial representation of the dependence of the components

of displacement upon the coordinate x3 through the thickness of a plate, one could

write

u,(x v(xx) + x (X )+x 2,(X + (36)

Most theories of bending and stretching of plates employ a polynomial up to a certain

degree. For example, using terms up to the first order for the in-plane displacement

components and only the constant term for u3 gives the first order theory described by

the assumptions

u.(X i ) Vo(X )+ X 3  .(XP) (37)

u3(x) v 3(xP) (38)

Corresponding to these displacements, the strains are:

e = v(,'G)(x ) + x 3 '0(.,P)(x y) (39)

V',3  V 3,. + (P. (40)

e3 3 =0 (41)

For this case, the quantity , is referred to as the curvature of the plate. Using

the general polynomial representation, the components of strain are

e = v( , 3(x)+ x3 (,)(x) + x 2 (x). .......... (42)
2 3 2

3 =V 3
+ x 3 3  + 3 ......... + + 2 x3  +3 x 3 X. + .......... (43)

e3 3  v 3 3 + 2x 3 0 3 +3x x 3 + ......... (44)

For the discrete laminate theory, the above equations apply to each layer.
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4.2.2 Equilibrium.

In line with the concepts outlined in Section 4.1, the "disequilibrium force vector"

in Section 3.2.2 is orthogonal to an arbitrary function over the thickness of the layer.

Noting that any bounded function over a finite domain can be approximated by a

polynomial of sufficiently high degree and with rational coefficients, the condition for

equilibrium, using a polynomial in x3 is

(0-, +f.) x dx 3 
= 0, for n = 0, 1, 2 ...... (45)

For a cylindrical solid with area A in coordinates x. and thickness t in coordinate x3,

(45) is

t

f (-io i + fj) x3 dx3 dA = 0 (46)

2

Here t could be a function of x. If we require that the quantity on the left side of

(46) vanish over arbitrary regions in the domain defined by x,

t

(0-+f) x dx 3 - (47)

2

For n = 0, this leads to the equations

N, +a+ -0- +F0 =0 (48)

+  "3 - 3 3 + F3 =0 (49)

Here we have introduced force resultants

t

(N P,Qo,F,)= f("O o,- 3,f,)dx 3  (50)
t

2
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The superscripted + and - respectively, denote the top and the bottom surfaces of the

plate. Considering n = I and only the equilibrium equation corresponding to i = 1,2

we get

M , Q + -(ar + o- 0)= (51)
2 A3 A

where we define additional generalized forces

t

S3 3 (52)

The quantities Q.,N ,,M.', are, respectively, the shear force, the normal force and the

bending moment resultants for the plate.

We note that for a consistent theory, the number of equilibrium equations must

equal the number of free kinematic field variables. Thus, for the first order theory

represented by the kinematic assumptions of (37) and (38), five equations of

equilibrium are required. Equations (48) , (49) along with (51) provide these. If u. is

quadratic and u3 linear in x3, there are eight kinematic variables requiring eight

equations of equilibrium. Following the argument given above, we shall use i = 1, 2,

3 for n = 0, 1 along with i = 1, 2 for n - 2 to furnish the eight equations.

Extending the argument to the case of u. cubic and u3 quadratic in x3, we have

eleven kinematic variables and the corresponding equations of equilibrium will be set

up using i = 1, 2, 3 for n = 0, 1, 2 and i = 1, 2 for n = 3. This provides a

systematic approach to an hierarchical development of higher order theories of any

order desired.
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4.3 CONSTITUTIVE EQUATIONS FOR ELASTIC PLATES.

4.3.1 Introduction.

In setting up equations of equilibrium, force resultants i.e, quantities of the type

t

fcrij xd (53)
t
2

were introduced. For n = 0, there are five quantities viz., N.,Q. For n = 1, there are

six additional quantities, viz., M,, corresponding to i = 1, 2 and M. 3, N3., defined by

t

2

N33 = f (o33 dx 3  (55)

t
2

For n = 2 and i = 1, 2 there would be additional quantities

t
T

N33 = jf73 3 dx 3  (56)

t

2

The number of force resultants is invariably larger than the number of equations of

equilibrium. For this reason, the equations of equilibrium are not sufficient to define

the resultants. However, if the equations of equilibrium are expressed in terms of the

kinematic variables, the number of equations of equilibrium being equal to the number

of kinematic variables, a solution could exist. The relationships, expressing force

resultants in terms of kinematic variables, are the constitutive equations for the

problem. For the first order theory, for five equations of equilibrium, there are eight

force resultants needing as many constitutive relationships. For u. quadratic and u3

linear in x3 there are eight equations of equilibrium in 14 force resultants needing 14
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constitutive relations, and so on.

For a laminate there are kinematic variables, equilibrium equations and force

resultants associated with each layer. In fact, additional field variables appear in the

form of interlayer tractions which are a priori unknown and are of special importance

in their influence on damage mechanisms. Corresponding to these interlayer tractions,

equations of balance arise as continuity conditions for the components of displacement.

For preexisting and specified delamination opening or slip, these would be the specified

measures of discontinuity. Thus, the number of kinematic variables for the first order

theory is 5N, where N is the number of layers, and there are 8N force resultants

along with 3(N - 1) interlayer tractions with as many displacement continuity

conditions. For a higher order theory based on u. quadratic and u3 linear in x3, there

are 8N kinematic variables with as many equilibrium equations, 14N force resultants

along with 3(N - 1) interlayer tractions and as many displacement continuity equations.

To derive these constitutive relationships, one procedure would be to simply

integrate the stress-strain relations for the material. Another is to proceed via

appropriate variational formulations written for three-dimensional elasticity and then

specialized to reflect the kinematic assumptions and the definitions of the force

resultants.

Herein, we describe the traditional approach. An alternative, suggested by Reissner's

work, used for the development of a hierarchical approach to constitutive theory of

plates is discussed in Section V.

4.3.2 Direct Integration of Material Constitutive Relations.

The general linear elasticity relationships described by (5) upon specialization to the

case of a lamina with material symmetry about the middle surface, reduce to (9)

through (11) which, for the kth lamina, are:

k (k) (k) (k) (k)
OA B " ey, + E 3 3 o e 3 3  (57)
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(k) 2 E(k) (k) (58)
03 - a3 e 3

3 = E e(k) (k) + E ( k) e(k) (59)

33 y633 e
6  3333 33

In developing theories of thin homogeneous plates, it is customary to eliminate e33

between (57) and (59) and then to assume a condition of plane stress to get

(k) ek) (k)
up (60)

where

-- ) ( k ) E ( k ) ( k )
S Etk )4,3 3 "33ck (61)

yboB =yb0 (k)
"3333

Noting (42) and (43), the material constitutive relations upon appropriate integration for

the first order theory and an homogeneous layer give the following constitutive

relationships for the force resultants:

y(k) t E(k) (k) (62)

M _
( k )  

tk E(k) (k) (63)
OP 12 'Y&094Y6

(lk) E (k) (v (k) + q5 () (64)

k 3*3 V3,-y

We note that the elimination of e33 is not consistent with the kinematic assumption of

vanishing e33. For the higher order theories in which e33 is nonvanishing, the

assumption of generalized plane stress could be used. However, for laminates, the

transverse stress at the interface is not negligible and indeed governs delamination. Here

this assumption would not be admissible. The general relationships based on (42)

through (44) would be

20 1 2 2

N (k) t E (k) v(k) k (k) +(k) (k) + t k 33) + (65)
alp k 6 0 ( , ) + 2 ( Y -6 ) ... k 3 3f 3 3  + 3 + .

M (k) t3 E (k) _1 ON) . ..... 1())+tk)'33o 3  ..... (66)

09 k kybo 13-k 6'0P (66
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(k) = t E ( k)  V(k ) + + ..... + tk) + (tk (k) + (67)Q& k y 3 33.'Y 12 b3 + -y +4kY 4

etc. The assumption of generalized plane stress was first used by Mindlin [1951] for

homogeneous plate theory and later by Whitney {1970] for laminated plates. Wang

[1972) showed that this assumption gave better accuracy than the assumption of plane

stress i.e., a33 =0. For a laminate, (57) through (59) were directlN used to set up the

constitutive equations for the first order as well as the higher order theories.

It is known from elasticity solutions [e.g. Pagano 1969, 1970] that the transverse

shear stress distribution is close to parabolic over the thickness of each layer. Itowvever,

the kinematic assumptions (37) and (38) correspond to shear strain independent of x3

within the layer. If, in addition, the interlayer continuity of tractions is enforced, the

shear stress distribution would have to be constant over the entire thickness of the

laminate. In general, the in-plane stress components are calculated using the constitutive

equations (57) and the remaining components are derived from the stress-equilibrium

equations for the three-dimensional configuration. Also, direct use of the constitutive

relations as derived above will not allow for shear and transverse deformation properly

and may result in erroneous plate stiffness. It has been customary to use a stiffness

factor to account for this discrepancy. As part of the present research effort, consistent

theories to allow for shear and transverse deformation were developed. This is briefly

described in Section V. Detailed discussion is available in items B.1.2, B.2.6, B.2.7, B.3.3,

B.4.2 and B.4.5 of Appendix B.
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SECTION V

A VARIATIONAL APPROACH TO CONSTITUTIVE

THEORY OF LAMINATED PLATES

5.1 PRELIMINARIES

Reissner [19841 derived consistent shear deformation consti,.utive equations from a

mixed variational principle proposed on a somewhat ad hoc basis. Herein, we start by

writing a general variational theorem for elastic bodies following Sandhu [1975, 1977]

and then specialize it to the case of a laminated plate. Reissner's functional is seen to

arise as a special case of the general formulation. Specialization to the case of a

laminated plate using an equilibrium stress field yields the coupled constitutive

relations between force resultants and laminar deformations.

The field equations of three-dimensional linear elasticity written as a self-adjyint

operator matrix in the complementary formulation [Sandhu 1975] are

0 0 0 8 8 L

o ~u _f680 0 & - L 0" u3 -f

-- C3 2C 3 3 3 C a 3 3  0 (68)
03063 333 ,333 ),b 3 0

-8 03 2C 4C 2Cy4C3 0

-L 1  0 C 3 3 0 2CY3 4 C -000

Here 8.0 is the identity tensor, A = -L, and
ai ax,

_o + 8 a(69)

I 2  A" + 5 (70)
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lic we have separated the "in-plane" dkplhicements and stresses from the transerse

and shear components. If the bilinear mapping is the inner product

<f,g> = If.gdR (71)

where f, g are functions defined c\er the region R, tlements of the operator matrix in

(68) satisfy self-adjointness in the sense of (A.21) of Appendix A to this report. The

operators on the diagonal are symmetric and the off-diagonal operators constitute ad.)int

pairs as defined in Appendix A. Consistent boundary conditions associated with the

field equaiions are

un= u n on S, (72)

-or n=-. on S2  (73)

Here a superposed circumflex denotes the prescribed value of the quantity over the

portion of the boundary indicated in the equation, t, are the cartesian components of

the traction vector and n, are components of the outward normal to the boundary. S,

and S2 constitute complementary subsets of the boundary of the solid. Besides the

boundary conditions listed above, there could additionally be discontinuity conditions on

the variables at surfaces interior to R. These can be stated as

(un JY = gi on S11 (74)

-(or nY=-h. on S, (75)
IJ I J -

Here the superscripted prime denotes a jump in the quantity and S,,, S2 are contained

in the union of surfaces in the interior of R. If there is no delamination and there are

no discontinuities in tractions in the physical problem, the right-hand sides of (74)

and (75) vanish, i.e., the continuity condition may be regarded as a "homogeneous"

discontinuity equation.
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5.2 A VARIATIONAL. PRINCIPLE.

Using tLe definition (A.20). the governing functional for the field equations of

linear elasticity along with the consistent boundary conditions and internal

discontinuity conditions is

f(u ,Oc) = <u,, o', + 2f,> + <r, -u. + C kh oklR "+ <ocr"i , u n. -2u nj>s)

-<u , (n -2> (76)

It is easy to show that the Gateaux differential of this functional along arbitrary

paths vanishes if and only if the field equations along with all tile consistent

boundary conditions and internal discontinuity conditions are satisfied. Noting that, for

sufficiently smooth field variables, the following identity holds:

u o'jj dR= - u oj dR + fu J + ( ucrn' dS (77)

where S is the boundary of R and S, is the set of internal surfaces imbedded in R

over which the quantity (u,oyn) is discontinuous. Extended forms of the governing

functional (76) can be written through elimination of one or the other of the operators

appearing on either side of the equality (77). Elimination of derivatives of all the

components of stress leads to a generalization of the Ilellinger-Reissner functional, viz.,

0) (U ,Oij) = 2<ui,fI>R + <O"j,-2u .+ C klijo'k >R + 2<0"i,un - u,ni> + 2<ui,t,>

+ 2<o'j,(un -g> + <u,,hi> (78)

Specialization of this functional, to the case where the in-plane strains are derived

from stresses, leads to an extension of the functional recently postulated by Reissner

[1984]. Assuming that the boundary conditions on S, are identically satisfied, the

functional reduces to

Q 2(U,,.U3 3 a ,'T )
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S2ui f, + 3 (o - 2 u3.3 -t- e33) + 2o-. 3 ( -U3,o - U",3 + e 3
) + ( -2 U" + e )) dR

+2 ut, dS + 2 u,h, dS + 2 / ',((nju) - gj)dS (79)

2 2, Ili

Here we have again separated some of the in-plane quantities and introduced symbols

e,,, =C 3 3 13 Cr3 3 
+ C)3oh3y),3 + C00A ,  (80)

e,, 3 
= C 3 3 o 3 Cr3 3 + 2 Cy3u30"y3 + C yo30y-6 (81)

e 3 3 = C 3 3 3 3 °a 3 3 + 2 C)3330"),3 + C )f330(- (82)

Va:iishing of the Gateaux differential along arbitrary paths denoted by (.,,rT) gives.

upon dropping the factor 2 throughout,

(-r 1", 1)r 2 -- (T.J - U,3 + e,, 
) + T,3( - u.3 3,o 

+ 2 e.3 ) + T33 U3,3 
+ e33 )) dR

- ( o AVo, + o 3 (Vo, 3 + V3.a)+- 3 3 v 3 3 - v~f)dR

+ f vt, dS + f vihi dS + -r,j((njuiY - gij)dS + Cr,,n,(v,Y dS =0 (83)

Using the identity (77) end noting that vi = 0 on S,

=(i~ 0 2 (v I(a- fil + fi ) + %A /(-U..15 + edB + T. 3(-U"3-U3,o + 2e,3) + T 33 (-u3.3 + e33 ))dR

2

Vanishing of the Gateaux differential for arbitrary v,,r0 implies equilibrium over R

and S2 , as well as the constitutive relations and the discontinuity conditions. For the

special case where the components of stress oj, are restricted to satisfying exactly the

relations
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vi(O'Tji. + f)dR =0 (85)

vi(t i - i)dS = 0 (86)

2

f v(t - h) dS = 0 (87)

vanishing of A0l2 leads to

(r.,(-U A + e"A )+7 3 (-U, 3 -3,o + 2 e, 3 + T 3 3 (-u3. 3 + e 3 3 )) dR +

fTf(nuY - g ) dS = 0 (88)

For a laminate of N layers the variational equation (88) becomes

tL

N 2
() ( e-( kl) + ((_U +k) + 2 -k)) + (k)(_U(k) + e33)0dx dAE ( U T tA u , + OP a3, U *,3  la- U3, 2, 3 +- T 33 ,- 33 + -3 k) 3d

+ f %((nuijY- g1) dS = 0 (89)

5.3 EQUILIBRIUM STRESS STATES

5.3.1 Preliminaries

Equation (85) through (87) can be satisfied by an infinite number of stress states.

Two different approaches were studied in the course of the present research. These

are:

1. Pointwise or "strong" satisfaction of equilibrium, i.e., chuice of stress states such

that
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. +f 0 on R (90)
Jl.0 I

In this case (85) would be satisfied regardless of the choice of the displacement field.

2. Global or "weak" satisfaction of equilibrium, ie., assuming the components to be

polynomials in the coordinate x. such that for a given choice of the displacement field,

the disequilibrium force vector o-i,, +f. is orthogonal to vi over R, t -i is orthogonal to

vj on S2 . and t,-h. is orthogonal to v, on S2,. This will imply satisfaction of

equilibrium of generalized force quantities.

Under (1) above, two alternatives, one based on the first order theory and another

based on a higher order theory were studied. For (2) one case assuming displacements

to correspond to the first order theory but the shear stresses to be cubic in x3 was

examined.

5.3.2 A First Order Theory

Assuming the in-plane stress components to be linear in the x. coordinate and

proceeding to integrate the equations of equilibrium it can be shown [items B.1.2 and

B.4.2 Appendix B] that, for vanishing body forces,
p(k) /,Q(k)+. .T(k- I) (k) (1

W--tQ + -2 I ) 3T40 (91)

Here Tk) is the value of the stress component r3 at the top of the kth layer, and

1= (_1 _02) (92)
tk 4

= 1 0+302 (93)
4

= + 0 + 02 (94)
43= 4

and

(k)
- x3  (95)

tk
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5.3.3 A Higher Order Theory

Assuming the in-plane stress components to be quadratic in the x3 coordinate, using

definitions (50) (52), and (56) specialized to the kth layer, it can be shown [items

B.2.6, B.2.7 and B.4.5 of Appendix B] that

(k) W N)(k) (k) (k) (k) (96).P 7) ,9+) 2  P + 73  P

where

(k) (9 -6002) (97)
1 4t k

(k) 120
2- (98)

tk

W 1 (--1-- + 12 02) (99)

tk

Using equilibrium equations (3) for i = 1, 2 along with specialization of (50) and (54)

to the kth layer, for no body forces,

(k) (k) (k) (k) k) t (k) (k-I) + (k)(k) (100)
&3 1 Qa +C M&3 + 3 Ta 4 a

where

(k) 3 (1-402) 
0101)

2
tk

k) = 300 (1-402) (102)

tk

(k) _1 + 3 02 _ 10 03 (103)
3 4 2

W = _1 - 3 0+30 +100' (104)4 4 2

Again, using equilibrium equation (3) for i = 3 along with specialization of (55) to

the kth layer
0 * . ( k )(k ) T -- k T ( k ) k ) ( k - I ) . J ( ) . , k

(k) W)N (k) + T-1) +( (k) ) W k) (105)
33 1 33 2 3  3 3 -p + AP

I lere
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(k)_ 30 (1 802+160') (106)
16 tk

6 (k)_ (-7-240+12002 +320 -24004) (107)16

W 1 7 +-240+ 12002 -3203 -2400') (10s)3 16
(k) tk 02 3

t (1 +80-2402 -32 +8001) (109)
4 32

W t (- + 8 0+ 24 02 -3203 -8004) (110)5 32

5.3.4 An Alternative Approach: The Weak Form of Equilibrium.

In this approach, equilibrium is satisfied in the "weak" sense i.e., for a given

choice of the displacement feld,

0(j,j +fi)u dR =0 (111)

For a first order theory, let the displacement field be given by

u =v (k)( +x ) + X xW( (112)

"W =V3()(X) + X3W 13 (kX (113)
3 3 P 3-

Let the stress field be such that a(', 0T.",k OrW are, repectively, linear, cubic, and

kTquadratic in the coordinate x3 . Thus

(k) X(k) (114)
Oto 1 1 3

i(k) b (k) (k)2 (k'3

0 3  a +b X +c (x ) 2 +d (X(k)) 3  (115)
a3) 2 2 3 2 3 2 3

(k)(k(k
0' W a3 + b XW ~+c (X (k)) 2  (116)33 3  3 3 3

Evaluation of coefficients leads to the following expressions:
C (k ) ( k) -(k))(17

u =v +0(u -u (117)
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W v~ (k) + O(uk) -U-(W (118)U3 3 + 3

0"(k) ( k N(k) + T )M 
o  

(119)

() (k) (k) W (k) (k) (k-I) (k) (k)

0'a .+C 43C + T o (120)

CrW WN+ T + ~T (121)c 33 = 1  N3 3  2 3 3 3

where

(k)_ 1 (122)
tk

1k) 12 (123)

2
tk

S (1 -4 02) (124)
2tk

(k) _30 1 -4 02) (125)
2 

(26

tk

W-_ 1 + 3 0 -02 1003 (126)3 4 2

(k _ 1 3 0+302+1003 (127)
4 4 2
(k )= 3 (1-4 02) 

(128)
2 tk

(k)_ 1 0+302 (129)
4

W k=_ 1 +0+3 302 (130)
3 4

Equation (111), using (117) through (130) yields the following equations of equilibrium

for generalized forces:

N(k) +4k) (k) =0 (131)
o o,% o3 ,3

W (k) tk -(k) (k)

(k . Qo + - (u o3 0- )( 0 (132)
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+ -k) . (3 -k) -k) 0  (133)Q .0 33 - 3 3  --

Mk _( t, +(k) W
M N "N33 T(a3 k " +cr 3 )=0 (134)

o.~ 33 2 33 3

These are the same generalized force equilibrium equations as were obtained by direct

evaluation of the integral in (47) for no body forces and n = 0, 1. Thus, the stress

state selected satisfies the equilibrium equations in terms of generalized forces though

pointwise equilibrium is not satisfied.

5.4 CONSTITUTIVE RELATIONS FOR FORCE RESULTANTS.

5.4.1 Preliminaries.

The variational equation (88) holds for every state satisfying (85) through (87)

along with u, identically equal to the specified value on the boundary S1 and provided

that (77) is valid. Substitution of the expressions (80) through (82) for eij and using

equilibrium stress components defined in Section 5.3 would give constitutive relations

between the force resultants and the gradients of the displacement vector. Using

polynomial approximations (36), the constitutive equations relating the displacement

parameters with force resultants are realized. Herein, we summarize the results of the

three schemes. The first is based on the first order displacement expressions (37) and
(k)

(38) along with the equilibrium stress field based on o- linear in the coordinate Xk

The second is based on uW quadratic and u W linear in x3  with the equilibrium

stress field described by (96), (100), and (105). The thrid approach uses the weak

form of equilibrium described by (111) along with disp;lacement assumptions (112) hnd

(113) leading to the stress state described by (119) through (121).
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5.4.2 A First Order Shear Deformation Theory.

Assuming that the in-plane strains e( = u are identically equal to i.e., the

in-plane stresses are defined by the displacement assumptions and the material

constitutive laws, and noting that for the first order theory (38) implies e, = u,, = 0,

neglecting e33, the following specialization of (88) is realized for the case where S,, is

identified as the set of internal surfaces on which a slip of magnitude g,,, occurs:

N 2 I (k)( (k) (k) --(k)Zok u.-u3.+2e 3dx3 dA =0 (135)
T~ o _.3.u3o + ec3 3

2
((k)

Substituting (37), (38) for u(') and u( , using (90) and cr ) in (80), and carrying out

the integration over the thickness, for the equality to hold for arbitrary values of T""

satisfying equilibrium,

W +v W=4C -Q~ -(T (k)+ T W(136)

W -c(k) ( ) Ckk) ( (k) T(k -) +4 Tk)
g., 3 n 3u -n u 3  3a3 - " k y k -

+ C (k+J)/ 3 Q(k+ ) t Tlk-1) + 4 t T W)
±cy3Q3 ' - tk+I ) tk 4  )

for k = 1,2 .......... N-I (137)

These are 2(2 N - 1) equations in as many unknowns. Written in matrix form for all

the layers, (136) and (137) constitute a set of narrow band equations in which the

shear deformation of any layer depends upon the shearing force in that layer and the

shearing stresses at the interfaces above and below that layer. Equations (137)

represent displacement discontinuity equations for the interface. In case there is no

internal slip i.e., g =O and the displacements are continuous, i.e.. u, , and u3,k vanish,

(136) and (137) for all the layers can be written as

= + [ (138)
Kba K I] X bT4
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where

Xa is the set .Q(,), k=l,2,... N),Xb is the set (t.3, k=1, 2,... N-1}, Ra is the set

{ ) + u3,, k = 1,2.... N } and T., Tb depend upon the specified shear forces at the top

and the bottom surfaces of the laminate. Elimination of Xb through static condensation

yields

N

Q(k) - (k)j (k)j j (139)=U , 3.0)

j=1

and, conversely,

N
0(k) +V -(k)j Q) (140)a,"} 3,o / P0,a

J= I

where j denotes the layer number. The matrices with elements /, and X are full

and symmetric. For a homogeneous plate, (139) gives

(c,+u)+.E 1t W +O*a- (141)
6 03& 3 (O + u3,P) + 

12  (141)

where E. 3.3 = C.303 . For no surface shears, this reduces to Reissner's well-known shear

deformation equation.

For the classical laminated plate theory, 4( = for all k. Then, defining

N
Q,. -- WQ'

Q.
k-I

N N

Q. Ey + u30+ ) (142)
k=I j=I

5.4.3 A Higher Order Coupled Constitutive Theory.

Using the kinematic assumptions of u. quadratic and u linear in x3 , substituting

for strains in terms of the kinematic field variables, and writing ej in terms of force

resultants using (96) to (110) , the variational equality (88) yields the constitutive

relations for the force resultants. Explicitly, the variational equality has the form
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( I k)

(k)( --k (Ck)N 2 W k ' V(.
zf o 3"o3 "o ''o < 

3 
>lO~ W l

<Q~),~ * < > (k).,(l

Q(k) 2 P +

(kM

Q(k)

(k) (k),(k) .(k) M(k)
(k) (k), (k

1< ! '(2 3 '4 > C 3o3 T(k-I) + k3 3a

T(k)

(4 .A - k) W () () (k)

7)(k) ~ (k)
13 (0,A)

N(k)

(k),( (k) ( k) (kW<T) 1'72 '7)3 > Ca M6

p W)

'(k)

3 3

T(k- 1)
3

(k), (k) (k) (k) ,.(k) > C((k) (k) g(k) - (n U,(k)
1 '2 3 ' 4 ' 5 >t 33 *01 T1 3 " t' p 5- 0n~

Tpp(k
- )

Tp, (k)

( k)

(k)
2

(k)
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N Wk
Y6

7)1 7)3* Cy53 3 Myb

N3 3

.(k- 1)

3

-<(k(k) I(k) W Wk) W+g(kk )'( k) o (143)
' 2 '63 *4 '651 >C 33 (3 - (n 3 u 3 ) 3

T(k-1)
PP

T(k)
AP

Carrying out the integrations over the thickness and writing

(k) = (k) v(k)(1 )
y = 2e 3 = +W (144)

(k) ,0 R(k) j k(k) (45)

the equality holding for arbitrary values of M 7,k)4 k), ,k) tk) leads3(k)

to the following constitutive relations for the case where gW identically equals

(u.n)'k)
(k) 2 c(k) 12 (k) -) + I

y_ 2 yk t~Y T1,=- ,c3I)I -Y T' (146)
k

k C>k) 2 I W+20M) <+3 k-i1) T)) (147)
C° 7 tk Y3"31tk y 3  2 -

V
6O'' 4t k Y"

6  3 -YbItk )]

+ C(k) 60 () 5 (e1) W t(T- T<k))1 (148)
t 3k 2 +56 A

(4) =ck) 12 M W)+c(k)(k1 -T W))+ (149)

ktk

W k) (_ 15 N(k)+ 180 p(k)l

kk 48
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+c(k) _ 6 )0 Nk + . -(Tk- 1 k) 15 (Tk-1) _T(k)) (so)+c330 Nt I 3 3  _ ( 3  +T-3k ) -  
(10) A

k 7t2 2-k -

(k) k) 16OkO N(k) - 60 p(k)
03 - - y33 t b 2t Y6

+ dk) k)(k) 3 (T(k-) + Lk)) tk (k -1 T(k))1
3c 33 -- -NT " 3-T( k))I (151)

3337t k 14 384 P-

(k '(k) =k W Wk 6 LMk 0pk
Z.- I ' ~

g33 - n 3 3 b331 "2 St ),1 2t --b
k Jk

+c(k i) _ 5N(k- 1) 6 M(k I) + 30 p(k 1)]

2 Y' Stk-t - y7t

2 2

S i(k-1)+ 8tk-W t T(k 1) + tk+C - f3333 N 33 - + 35 _T" + 21- T P 6

+k+) 3 U)+N(k+ 8tk T(k) tk. T k4) tk 1 4k) k ) (152)
'' 3333j 14 N 33 70 3 60 - 210 PIP

(k) (k)
g 3 g3 , =

4 5(k) 7 0(k) 15 M(k) + t T(k- 1) + 6t T k

70-" 3 y3 J -7 " k -y3 k 7 k7

4 _ k+,)_ (k'I) 15 k+,) Tt) TkI)

707Q "Mk + M +6t T +t Tk
70 13 73

1  
V

3  ik'l kl y

+ cj_ W 1- N(k) __ M(k)" _ 1:5P7 °k W

2 c " 28 Vby c :5 t k )b )b
+ _L &k ) 1 -k ( -LNkl .N ,) -+ 1t5p (k )

2 2 3 3
+ j e k (k t Te k- ) t k W .k Te k-1) - tk k

+ 33331 14 "33.a 35" 3,c, -- 0 3,- 2 10 P-P 1

fk [ tk- , kl ( k t2 t3 W tk+! Tk+1)

+_ Ck k Uk1 ) + LT(k) k Tk) T(k) (153)
6 3 - 14 33,- 10 3,. 5 105 210 A
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Equations (146) through (151) are the 14 constitutive relations for the 14 force

resultants for each layer. Equations (152) and (153) are the continuity equations. If

interlayer slip and delamination were not present, the left-hand sides of these equations

would be zero.

5.4.4 An Alternative Theory.

Using the kinematic assumptions (112) and (113), substituting for strains in terms

-1k)
of the kinematic field variables and writing e) in terms of the force resultants using

(114) through (116) along with the material constitutive relations (80) through (82),

the variational equality yields the constitutive relations for the force resultants.

Explicitly, the equality has the form:

N 2 k('k) (k)

_ ~ , I'(-,)J
(. k) k) 3 k)

- <Y'' (k) 1,X 3  k)]-<,' 's: ss3I

()<e k )f , (k) 
k

(k)1 72 ( ,k 4 01 4 3 y(k ) (k

MY61 T Wk

3.

(5k)

+ k < (.4k)& k) fk-) 7' k) k)

0301

W~k
04

W0



' k)

k- kI f~k )(k)NO'k)
+ q3332 10 1 C7),3 3 I W

(k) .6

N33
(k), (k), (k W k >kI C(kxW = 14

2 3 333 3 3 x3  0 (154)

71'k)3

Carrying out the integrations over the thickness, for the equality to hold for arbitrary

values of the quantities S1 .k) k- k) )andk) leads to the following

constitutive relations:

() 1 (~k N(k) C(k) N qkW)V( ,Ul)- tk Y -' y b y - 33o h ' 33
/  (155)

0( k) _12 C~k W NtW 1 CkW (T (k-1) -TW)16

(k) v(k) =(kC)3IQ 1- T 1 7
Q'A + 3o - Y 3o

3. +v = 4Ci + (T(k-1)+T (157)

33 t y tYk) 11 M(k)+ + L(T 1)f) (158)

k__ 3 - I)

W I'3 +  Clk 6
3 k ) N (k+ ) 6 33 -tk3 (kl) -(T - +T k) (159)

(k) k) (k) W 3 M ) 3 (k- 1) + k)
g3 nC'y3t 0--Q -7 3 + -I+ ( -ecw 1 10 tk 7 0 Y-

k--k L (k+ i) i . 3 t1 I k k-)+C Q+ -Mk++ -fLL( 6T k+T -e (160)

y- 33 -10 ), 7tk- y-' )

93"U ,33 - 3 3 ' 33 "- 3 -- (1 1
tk7 

0 3 T

(k ' (k 1)~ m (k) (k1) - N (k) + tk I tk T (

g3 - I ru 3  'I M,6 3333 1- 0 33  1,5 - 3 +-~Tj
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Equations (155) through (159) are 11 N constitutive equations for the mechanical

variables N( k)
, (k),(k),mk), and N W. The equations (160) and (161) are the displacement

continuity conditions. In case there are no displacement discontinuities in the physical

problem, the left-hand sides of these two equations will vanish.

5.5 DISCUSSION.

A comparison of the three alternative approaches described above show\'s that the

constitutive relationships are identical wherever the field variables in\lved are the

same. 'or example, (136), (146) and (157) are identical relationships for shear

deformation. Similarly, (147) and (158) for the bending stiffness are identical. Other

relationships have diffeient form because different field variables are used to describe

the deformation.

These theories explicitly allow for the laminated nature of the system and do

away with the need for use of ad hoc stiffness factors. The relations are compliance

type i.e., they express deformations in terms of force resultants. Thus they can be

directly included in a complementary type variational formulation. Direct formulation

is possible by inverting the constitutive relations. Indeed, for the first order theory,

(139) represents the stiffness relations for the shearing force. It should be noted that

even though the complementary relationships are narrow band, the stiffness relations

will be full matrices i.e., the force in any layer will cause deformations in all the

layers. For the higher order theories, inversion of the constitutive relations would

obviously be more complicated. On the free edge, some of the traction components are

specified. These cannot be condensed out as could be done for the interior points. Here

the full form of the constitutive matrix has to bt retained. The compater

implementation of the application of finite element methods to laminates described in

Section VIll allowed for this feature.
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SECTION VI

A RESTATEMENT OF PAGANO'S THEORY

6.1 INTRODUCTION

Solving three-dimensional equations of linear elasticity for a homogeneous

orthotropic laminated plate, Pagano [1969, 1970] observed that the in-plane

displacements were layerwise almost linear, and the shear stresses in each layer were

nearly parabolic. Following Reissner's procedure for plates, assuming the in-plane stresses

to be linear over each layer, Pagano [1978] solved the equations of equilibrium to

obtain shearing stresses which were quadratic and transverse normal stress which was

cubic in the transverse coordinate. Thus all the six components of stress were

considered in the analysis. The constitutive equations were derived using a variational

approach. Pagano satisfied the continuity of displacements as well as tractions at the

interlayer surfaces. The accuracy of results from Pagano's theory depends solely upon

the accuracy of the assumption of linear in-plane stresses over each layer. Thus, the

procedure can be made as accurate as desired by subdividing each lamina into a

numbtr of layers. However, the theory yields 13N (where N is the number of layers)

coupled equations which are difficult to solve. To overcome this difficulty, Pagano and

Soni [1983] proposed a "global-local" approach to the problem. In this the laminate

would be modelled by a higher order theory, e.g., Whitney's, to get approximate values

of stresses and deformations. This result would then be used as input to a second stage

solution, based on Pagano's theory, for the local problem. However, the global solution

being grossly in error, the final solution is still generally unreliable [e.g., lisiao and

Soni 1987]. Numerical solutions, using the finite element or finite difference methods,
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are possible. For application of the finite element method in a systematic fashion it is

desirable to write a variational principle for the problem.

As part of the present research effort, Pagano's theory was carefully examined.

The constitutive relations for the force resultants were obtained by direct integration of

strains and their moments without resorting to any variational principles. The number

of field variables was reduced by elimination of the quantities N¢ and M ). Consistent

boundary conditions were identified and variational principles developed for the

problem. Extended variational formulations admitting relaxation of the continuity

requirements on some of the variables were introduced along with suitable

specializations to make the problem tractable. One of the specializations was

implemented in a finite element computer program. Details of this investigation are

contained in items B.1.8, B.1.9, and B.4.3 of Appendix B. Herein, we merely present an

outline of the principal concepts and summarize the resulting equations. Variational

formulation of Paganos theory as well as the displacement-based theories described in

Sections IV and V is discussed in Section VII.

6.2 PAGANO'S THEORY.

6.2.1 Equations for Stress Components.

Assuming the in-plane stresses to be linear over a layer, using the midsurface as

the origin for the local transverse coordinate x3, we have:

N X 3Ma
"'A + 12 3M (162)
t t

Substituting this expression in the equations of equilibrium, Pagano [1978] evaluated the

remaining components of stress as:

01 3 = (QS- 2" (- )2 + T + 2 t (163)
52t 2
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+ AX 3  tI..+X-(T +T+ 1 (T+ -T _ -(T + + T ) T33 2 33 33 2 0 It . .. .

3 -- T3) X 3  4X3  (164)

2 3 t 3t 3

where

P= T -T " (165)o 0

and

% t(T[, +rV) (166)
2

Pagano's results are identical to Reissner's though the form is somewhat different.

6.2.2 Equilibrium Equations.

Substitution of the expressions for components of stress in (55) followed by

integration leads to

2

N (T3 +T) +t(T -T,) (167)33 2 3 3 12

Similarly, defining

M3 3 = -O 3 3 X3 dx 3  (168)

We have, upon appropriate substitutions,

3 2

M 120 ( T  + T-. ) + -L-( T - T) (169)
33 20 0, o 10 3

Pagano combined (169) with the equation of transverse force equilibrium to write the

equations of equilibrium for the plate as (48) , (51) and

Q33T+ 2 I-'+ t (I'+ +I- )=o (170)' -- M33+ 13 3 6 ... ...

Some manipulation of (169) and (170) leads to the following alternative equation:
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601 33  t +
Q + t" +5(T 3 -T3)- -(T. +T, )=o (171)

t23 3 2 a- q-

This equation can be solved for M33 and the relationship used to replace (169) above.

6.2.3 Constitutive Equations for Force Resultants.

Pagano [1978] set up a mixed variational principle to derive the constitutive

equations for the problem. This required introduction of quantities defined as follows:

t

(r([= 2 4x 8x21f(x) dx (172)
f 2 ' 3-1 t

2

where f is any function of x. In the context of a lamina, components of the

displacement vector as functions of the transverse coordinate x3 are integrated with

appropriate weights indicated in (172). In our statement of Pagano's theory, we do not

use any variational principle but, instead, directly integrate strain-stress relations (9)

through (11). Using (1) to define the strain components, and carrying out the

appropriate integration, we get the following results.

t

f e,, dx3  gives
t

2

- 2
u, C = N +C 33  N) (173)

t

t
f016 t ed3 gives

t
2

U. - (C M 6 + 33 0 M3 3 ) (174)

-t
2

f e 3 3 dx 3  gives
t

2
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u+ - = 15

3 -U 3 =Ch 3 3 N, + 33 N 3 3  
(175)

t

2

f x 3 e 3 3 dx gives
t

2

u3 
=  + u3 - 2 M + C 3333 %13 3  (176)

3 3 u3  (CP 3 3 -10 '~

Sxe3 1dx gives

t 46 ,, c ,3 3 NN -- (. (T.++T )-- . + 3u-u ) (177)
C 33N 5 3 333 3 3 5 ~333.1 3

t

j'xe3 3 dx. gives

u u u 2 -c M 2 t (TT) (178)
3 3 3 -- "5- 63/ 3  7t 3333 M 33  0 (3333 3 3

e, dx3  gives

2

- 8 2 + -(79u - 1 C - (u+  --)  (179)

4 3. ' 2 3 3ci 3 t
f x 3e 3 dx 3  t ives

f

22

U - C = +- + C Q, + u - (181)
"1 , 1- 3 " I
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Elimination of the surface displacements from pairs of equations leads to

- 4 8t +- 3  123u - = - C3 M, + 1- C M -- (T+-T) (182)

3 T 03 P 7t 333 33 35 333

6u 3 =2C. 33 N. + 2 C N -- C (T + T) (183)133 5 3333 33 5 3333 3 3

4 8 + - 32u-3 ,- C3o3 -- 3o3 Q-- (184)

Eliminating N, and M33 using (55) and (168) , the consti-.* %. equations (173) and

(174) become

17 = u =-C N +IC 3 T3 +T + t-r+ -T 185)

2 2 ((4 t ', O 2 3 6 P' P

1 = 3 - 12 C I 12 I (T T-)+ T' + T (186)

where

_ -- + 8 -- (187)

I 2 ap P)& 6

and

=- 2 uP(188)

Equation (184) can be written as

v3 + = G3(iu - )+u -2 (12C Q - t(T + T-)) (189)
3, 4 3, 3.p t P 5t. ,3P3 Q 3 +3

where we have introduced the definitions

- 3v 3 ( 3 -- 3) (190)

S u (191)t p

Equations (185) , (188) along with (182) and (183) are the constitutive equatxns of

Paganos theory.
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6..4 Interface Displacements.

The displacements at the surfaces of the plate can be obtained from (177) through

(181) . Thus

+ 3t I _ 3 Lu*)-(tu3 _Uo
S8--t( -U3 8 3, 2t 4 3 2

+ -L0C 3 3(t (4T+ - T,) - 3 Q) (192)

u =t( ,--U.-- U)-(-U +-

+ 3- C 3 3 (t (4T - T )- 3Q) (193)

3 U C3 3 3 T

u+ = (5u3 -- u3 )+ 2 3 + 3
3( t(6T+TI)-7tN -30M 33 ) (194)

u-=(5 3 -U 3)-3u- C3333(t2(6T++T3)-7tN33 +30M 3 3) (195)

6.2.5 Continuity Conditions.

Continuity of tractions and displacements across the interfaces between the kth and

the (k+l)th layer of a laminate simply implies

-(k) = (k+ 1) (196)
i3 i3

U (k ) (- -I t U : (k+ ) k - , ( t" k , ( 1 9 7 )
1 2 k 1 2 kI

6.3 THE FIELD EQUATIONS IN OPERATOR MATRIX FORM.

6.3.1 Equilibrium and Constitutive Relationships.

The equations of equilibrium (48), (51) and (171) along with the constitutive

equations (182), (183), (185) and (189) can be written collectively in the form

[A](k) {u}(k) + [B(k){o,}- ( k) + [Cfk){or}q k) = 0 for k = 1, 2 ...... N (198)

where
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0 0 0 1 F 0 0
2 '

o o 0 0 IF -1
2'

o O 0 0 0 0
[ aj(k) =  

_ 1 1 k) (199)

2 2 0 t " 0 0

0 -i F 0 12 Ck) 0
2 3 ,o3 htk

o_ 0 2 4 .Wk
-yp p 5t k P 3

)
3

-1 ()

tk

2

O -1

[Bfk) _ tk C(k) (200)

12 ,UP33 a, 2 "2p33

I C(k) 0 6 (k),up33 a-, Stk  ;' 33

2 ek
5 p3y3

1 0
tk -- 0
2

0 1
[Cfk) t c(k) . IC(k) (201)

12 k 'p33 0 y 2 33

I 6 (
10 ip33 5tk PP33

5 p
3 -y

3

_±(k)

±(k) ' £k) (202)
t±(k)

or 33

and



--4k)
V

{u} V3 =(203)
N(k)

-(k)

'UP
o(k)

p

W

6.3.2 Displacement Continuity Equations.

Substitution of (192) through (195) into (196) gives

[A k) {a 1) + [Bk) {u)(k) + [_](k) {1 -(k) + (1 (k 1){uCk ) + iA- (k-:. } (k,, 0

k=1,2,3 ...... N-I (204)

where

=k) A 2 (205)

A2 1 A22 1

with

Ak)= IC(k) t3 0 - 2 c4k)

1'1 140 3333' 15 k y3p3

A (k) _ 13 c W33) 2

12 420 3333k-p

A(k)_ 13 CWk 2

21 4 3333 k'-

(k) 9 (k t
A 70 3333 k

-1 It 0 -Lt ck) 1 k) 2 (Ic)

-Bf k) 2 k 12 k up33 ap 10 k.13 3 ap 5 P3- (06
[k) = -I 1 c(k 6 ek)

2 pP33 5t k pp33 0

- k) --(k)

-( =(k (207)
- k) -(k)

with
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-=k - i(k3 3 + C(k 1)t 3 )0 + 2 C.--(+ctk) +t)
I 105 3333 k 3333 k*l tk' ),3p3 k'I ),3p3

--(k) 11 ,-k)t 2 -C(k1) 2 )
-21 210 3333k 3333 k*1 p

=(k) 13.(k) 2 (kI) 2

21-- 33 3 3tk !3333'k I P

W -t ( 0 -- t (k) C(k) _)

rdk 2 k 12 k lP
3 .3 p 10 PP3 3 

ap 5 p3 ) 3  (208)
- 0 1 1 C(k) 6 c(k)

2 pp33 Agp33 0

and

A22

with

.4k+ 1) _ 1 (k'l) 3 02 2 c (k-1)
A1  140 3 3 3 3tk-I 0yap 15 k-I p3y3

A(k+l)= 13 c(k+1) t2 0
1 2  420 3 3 3 3 k+1 ap

-(k- ) _ 13 (k+ 1) 0A , 12 t3333 k+ l0-

-4k 1) 9 (k, 1)
22 70 3333t k'I

6.3.3 The Forcing Functions.

The quantities {o-}+") and {o.}PN) are known for a problem and, therefore, can be

moved to the right side of the equalities (198) and (204) for k corresponding to the

top and the bottom layers. These will appear as forcing functions for the problem.

Defining these as [Q]'. Q ", [I ' ), [PI) , we have
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1 (1) 3'-(o) 2 (j) ^(o), . a ) (2& o)

I AI) (0) = 140 3333 0
3.,p- -5 ty3p3-y3 4-2-0333310- 33.p

13 +(1) 2 - 9 +Ie) (210)
420 "733331-y3'> 70 " 333311 33

1 (N) 3 -(N) 2 -N) ^(0) 13 4N;) 2 
-(N)

[Q(N_1) =[AIN){0-(N) 14- N (3.o-- "-N>3p3-3 - '' 3 3 3 3 N-.p211)

13 C(N) 2 -(N) 9 ( ^( N)

420 3333 N i),3,, 7  3 33 3tN0-3 3

& (0)
0

y3

it &( °>
2 - -3

^(O)

0"33

[P]')=[C] I){°'}°) = C( 12 (t ) +6., (0)) (212)
12 ,,p33 1 31 33

1 C1 ( 12 -(o)
10 C ( ,) +.( 1_ _ 33

2 (1) (0)
-5 3p3 ay3

and

-(N)

1 -&N)

_,&(N)

- "3 3

[I(N) [BfN){-}(N) C4N) (_t - (N) +-N) (213)

2 p33 N +3,, 3 3 )

I (N) -(N) 12 &(N)

2  (N) (N)
-5 Cp3

,/3 
CT),3

In (210) through (213) the superposed hat denotes the specified value of the quantity.

63



6.4 DISCUSSION.

The equations of Pagands theory stated above are self-adjoint in the sense of

(A.21). To complete the statement of the boundary value problem, we need to identify

consistent boundary operators. This feature is discussed, along with the broader problem

of variational formulation of the governing equations, in Section VII.
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SECTION VII

VARIATIONAL FORMULATION OF THEORIES OF

LAMINATED PLATES

7.1 INTRODUCTION.

In developing the constitutive theory for laminated plates in Section V, care was

exercised to assume the path of the Gateaux differential to lie in the same space as

the one in which the solution for stresses lies. This resulted in constitutive relations,

for the force resultants, which are symmetric and a strain energy function or

complementary energy function can be written for the plate. Similarly, the equations

of Pagano's theory are self-adjoint in the sense of (A.21). In both the assumed

displacement and the assumed stress approaches, the complete set of field equations can

be written in the form

[X] {y} = {z} (214)

where [X] is the matrix of field operators, {y} is the set of field variables, and {z} is

the set of forcing functions. These field equations include the equations of equilibrium,

the constitutive equations as well as the continuity conditions. For each of the theories

described in Sections V and VI, the system of coupled equations is self-adjoint. If

consistent boundary conditions can be identified, general variational formulations along

with appropriate extensions and suitable specializations can be systematically generated

following the procedures outlined in Appendix A and detailed in references [Sandhu

1970, 1971, 1975, 1976]. Detailed discussion of application to laminated plates, using

different theories as the starting point, is given in items B.I.1, B.I.2, B.l.8, B.4.2, and

B.4.3 of Appendix B. Herein, we merely present an outline of the essential features.
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7.2 THE FIELD EQUATIONS.

In (214) the operator matrix [XI consists of sets of operators applicable to each

layer. If the field variables are arranged as

{u}(2)

(Cy2)

ju}(3)

{o.} 3)

1y) (215)

j(N- 1){ui}-l

{u)(N)

then the matrix [XI has the form:

[At 0 [Bf ') 0 0 0 0
[A '> [-]f' oc]' o o o

o [c] (2 [Af '2 [Bf 2)  o o

o [A1 2) [ 1_2) [C3) [-Al 3)

o o o [c] (3 [Al3 [g3)

o(o[3) [-](3) [=30 0 0 []=13

[X1 0 0 [Cf (216)

o 0 [Aff. o 0 0

0 0 0 0 0 0

[cON-1) [dN-1) [fN-) 0

0 [A] (N- 1 [Af N-1 ) [B]N-1) 0

0 0 aN- 1) [ZfN1) [dN)

0 [CIN) [AIN)
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This operator matrix includes the equations of equilibrium as well the constitutive

equations for each layer and also the continuity equations across interfaces. Explicitly,

the equations of equilibrium and the constitutive equations have been stated in (198),

those of displacement continuity in (205), and (210) through (213) define the forcing

functions for each layer. Collectively, the forcing function {z} has the form:

0

0

0

1Zz 0 (217)

0

0

0

0

0
_{p}(N)

In (216) the operators [Ark) for k =1,2. ... N and -E" for k =1, 2 ... N-1 are

self-adjoint with respect to inner product and the sets of operators {IAIL) [Atk)};

{[CfK),[Clk)}; {[BTi),[Bk)1 constitute adjoint pairs. This is sufficient to satisfy the

self-adjointness condition, described in Appendix A to this report, proposed by Sandhu

[19761 for linear coupled problems.
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7.3 CONSISTENT BOUNDARY CONDITIONS.

Consistent sets of boundary conditions must be identified for systematic

development of variational principles for a given set of field equations. For tha case of

laminated plate theories described herein, the form of the boundary conditions was

found to be

[W] {y} = {g} (218)

where

[D" o o o o

o o [Df o

0 0 0 0[w] .] [opf2) [-F1)[o

[W] = 0 0 [ [03) [ (219)
0 0 0 0 0 0

o 0 [qj4) 0 0 0

0 0 [-j
N

l1) [N - 1) 0

0 [DI N- l) 0 0

0 [o](N -  [E N -1) [*OfN-1) [-FN)

o 0 0 0 [DfN)
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{g (I)

{g1}((

w 2 (2){u}2) g

(O.1-(2)

{(U
(3)  {guQ(

3)

{orq3> (gJ}3)

1y) and {g} (220)

ju)(N  1) ig ,N- 1)

(0.1 igCYN -1)1) ~ {g(N

{U}(N) {g})(N)

In this set, the operator [Drk) describes the boundary conditions for the field variables

(displacements and force resultants) for the kth layer. The other set of equations, viz,

[ofk- 1) 17)-(k- 1) + Tf k) {ul(k) + [Ok{k){-(k)-FIk+ 1) {u)(k 1- ) + [kk+ 1){c4r+} I = {g)(k) (221)

denotes the displacement continuity equations at the boundary. The right-hand side of

(218) lists the specified values of the field variables or their appropriate functions at

the boundary. Detailed form of indvidual operators is given in appropriate items listed

in Appendix B. As an illustration, we list herein the operators as they appear in

Pagano's theory.
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7.3.1 CONSISTENT BOUNDARY OPERATORS IN PAGANO'S

THEORY

The operators and quantities appearing in the vectors of field variables and forcing

functions in (219) and (220), for Pagano's theory, are:

(k)
v

0u(k)

(k)

U}(k) V3(222)

N(k)

k)

0 0 -7) 0 0

0 0 0 0 7)0 0

[Dk)= 0 0 0 0 0 -TIP (223)

)o 0 0 0 0 0

0 TIP 0  0 0

0 O7TI 0 0 0

0 00__ )t10 6 k)
[E(k)_k 00---tk -3 3 %y o0337) 0 (224)

000 0 0 0

k) ~ (k 01)0_ (k)

[F]fk= 000 12-tk 0 3 37)y Tc 4 33 37)y 0 (225)

00 0 0 0

1t3C(k) 0 13 25k)
[0 ]k) 3140 k 0 4 3tk 333'y (226)

0 0

k) 1 3-k) 0 1 .. (k)
[ ]k)= 14-tk 33337 pay 420 kC3333

7 1)Y (227)

0 0

_1[3Ck + t3 kli Ih a~ dlft k+I)_-t 2 dk) Tk) ~ k (- III )- -11I ,c3i T )~ 3]O

1(5 k 3333 k I 3333 P 0 210 k-1 3333 k 3 (228)

0 0
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and

0--k)

(o-k) = 3 (229)
-(k)

033

Jump discontinuities in the field variables can be introduced as conditions on

internal surfaces. Indeed, as the finite element bases generally have limited smoothness

across interelement boundaries, even in cases where there are no discontinuities in the

physical problem, the smoothness condition of the physical problem needs to be

introduced as a set of "homogeneous" discontinuity conditions. Similar to the format

for the conditions at the external boundary, the discontinuity conditions are:

(k) o .) 5k)

_(M(k),,, '(k) s(k)

= on (230)
(WYn '(k) S(k)

a 2 l21

(0 (k '(k) S Wo Aq 9;4 i41

1 3(k) 1, -(k-1),+,- 13 t2(k) (a ((k- I5
-- -- 4- k3333 p3,p 420 k3333T)1Y 33

+ (k) 1 (N(k)' 1 (ML))
+C 33 7)/ 12 01

3_ _ (k - I) 34.k) ) .,
+ 1 ( t3.C (k )+ t 3(k) Tj(0-k))

105 k 1 - 3 3 33  k'3333 p3S

+ ( - 1) 2 .(k) + k0 ((k i))
+ - (k - (0-3 ) + tk (N.k 15'2 1 0 k 1 1 3 3 3 3 -- t 3 3 3 3 1 2 k) 0 3 -

10 oA33 0 0 k 13333 p3,p

13 t (k-I) ( "(')' ()sk
+ 13 tk-1)33 (0 k 33 9k on S, (231)

420 k 1C333 3 Y) 33 (T I k

The subscripted i indicates an internal surface. The "homogeneous" discontinui'v

condition, i.e., vanishing g, , represents the internal continuity constraint for the
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7.4 A VARIATIONAL PRINCIPLE.

For the set of field equations, including the continuity equations, along with the

Nundary conditions and the jump discontinuity conditions given by (214), (218), (230),

and (231), a variational principle can be constructed following the procedure outlined

in Appendix A. The governing functional for the problem, following (A.20), is:

({u},{o-}) = 2<{U} (1), {P}(')>sm + 2<1l (N) jp R(N)

N N

+ (k [C]F -} ( ,>, + '1 u)(k, [At{u(k)

k 2 k I

N I

+ 1 N. 1k),Bk)I}(k +
NI. , NI R- E -'(k)

k=1 k=l

N-I N-I

+ E<{o-)-Wk [cf k 0){u(k-"> RM.1) + <{0 .)-(k)' , [AP,,.{o'I)-4- 1 R

k-l k=2

N-2

+ E<{.o-(k) [A-fk* I){O)-(k- I)>

k=1

+2 <1.}-(N ,I, [Q (N > + 2<o.} ,),[Q)>

N

+ E<u}(k) jDk){ 1(k)-2{g ,)>(k)

k I

" 'f' r) +[I-"t {(1)p''lI}0. ) (1)+- W1'){ull} 2 +j2)}((2) -2gO (I) (

N-2

+ E<i0,}k), [ofk)1i0 )-(k- ) + [Ifk)U{) ( k) + j 1fk)({0
- k)

k-2

+[p(k- 1)(u}(k- 1) + [U 'k I)i 0 . )-(k- 1) - f t(k)

+ <{C. (N ) [OfN '){Cr) (1h 2)+ InfN 1){u)(N ) + [ ,l - ) 0 . f-N -) +[rIN) ) >
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N

+ <{U)(k) , k)]k ({u}(')) - 2(gk '(k)>

k=1 Sul

+ <{o- -(1)' [j 1)({uV ())" + [o )(1 -0-1), + [I ' (Auj(2 )) + 2 ;12 o- (2)).

-- 2 go.' (1)

S>

N-2

+ F ,(O- (k), [of k)( -} - ,>), + [Ekk((u k)y, + [.,] ,() ,

k-2

+ [Ik-)"(i u}(k- ))' + [ou k i)' ( k
o- ))o . -

) '  ' ((k 1

+ ( -(N 1), W ] ' )({} (N 2)), + [Ef' 'k : 1) +[, N J)( o- (N I

+ [i(N)(jU}(N), - 2{go,}I(N 1)>.. 1) (232)

Here R(k) is the two-dimensional region occupied by the kth lamina and S.k)

symbolically represents appropriate portions of the boundary of Rk). {u,(k) { }(k) denote
the sets {u}(  V(k) 4 (k) .N(k)ak) .4k) k=te s e t s, , v ,N , (k , e . " Q a n d o r}( ) -  ( )  -,

3 

-0 
ao 1 

y3 33 ), k= 1,2 . .....

respectively. S(*) represents appropriate subsets of internal boundaries in the spatial

region. S(k) is the boundary of R(k) and S"') is the collection of a finite number of

internal surfacesacross which the field variables or the path of Gateaux differentiation

may be discontinuous.

It can be shown that the Gateaux differential of this functional along arbitrary

paths in the appropriate space of vector-valued functions vanishes if and only if all

the field equations, the boundary conditions, and the discontinuity conditions in the

interior and on the boundary are satisfied. The details of variational formulation and

Gateaux differentiation for various theories developed in the course of the present

research program are contained in appropriate items listed in Appendix B.
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7.5 EXTENDED VARIATIONAL PRINCIPLES.

In the operator matrix IX] in (216) the sets {[BBkj}Bk1; {LCffC ,[J]); and

ffAlk) [Ak1)} constitute pairs of adjoint operator matrices. Thus

(1 (k) tk ) 1 (k)>

<or ), 33"i2 + " >s(233)

(k 1) ,(ko-(k) < -(k) (k)--(k-i)
<k , W =<o , 1 R(k)

(k C ) 1 3C.(k) (k) (k) 1 3 Ck -. (k -I)
)3 14T k -33C 3 ii3'>s,)-<a-y3 140 tk 3 3 3 3 a-3.0 >S(k)

(k) 13 ' ) W ~) (k I) -<(k 1) 13 2 (k) -(k)+ <"" t 0 >>+C (234)
33 -4 

' 3 3 3 3 ) '3 33>S"k 420 k 3333 y 3 
7 ) ,> S ( 234

and

{fa}(k) , Bf(k)lc_}-(k)> = f{}-(k)j[Bf(k)fa)( k)>

-(k) 1(k) ( _ (k) tk X(k)(
<y3  (33-1 oAf -- )> (235)

~ 10 ~ 12 0'A~k

Also, the operator matrices [- k) and [Ak are self-adjoint. This implies that some of

the operators in these matrices can be replaced by their adjoints with appropriate

changes in the boundary terms. Thus, it is possible to eliminate the operators requiring

differentiation of the generalized force quantities. This extends the class of admissible

functions to include force resultants which may not be differentiable. Specifically,

elimination of operatorsA k', A k', and Atk' from the operator matrix [AT' can be

accomplished through the following identities:

-(k) , (k) (k) (k) , (k) (k) >,(k) (k)

), A 14 Nof> R(k) < #PA 41V'Y R W)+ <No >P 5(k) (236)

(k) (k) (k) (k) (k) (k) (k) (k)
A 25M 0>R(k) <MUo, A 5 2 0 >R W + <MoA?7o , '0 S (237)

k) WP (k) (k) -k)Ai 3  3 3 (k) <Qo T?'V3 >S(k) (238)
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Using (236) through (238) to eliminate terms containing derivatives of force resultants

leads to functionals with extended domain of definition. Some of these functionals can

be specialized to yield formulations in which the number of field variables is reduced

by requiring some of the field equations to be satisfied identically. One such

specialization is stated below.

7.6 A SPECIAL VARIATIONAL PRINCIPLE.

Assuming the variational formulation to be extended through elimination of

derivatives of the force resultants, and further assuming that the physical problem has

no displacement and force discontinuities, i.e., {gj}" vanish, and that the displacement

boundary conditions are satisfied, the governing functional reduces to the one used by

Chyou [items B.1.8 and B.4.3, Appendix B] to set up a finite element solution scheme

for the problem. This functional, in explicit form, is:

r ' O ),3 > t W I 1 , 3 0 5 3 R (D  3 O 3 3 > ( )

-(N) (N) <-i(N) (N) -(N) (N)
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- 2/ 3 R ) 2 N y3R 3 3R~k <3 R03 (N)

N

+ ( < -(k) -c(k ) ( 1 k) - (k -) -, k) 1 -(k-) -1 )

" E2'<:'~ v -y "3 R W 3 + -t03 R
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W + <V 3l "lOa 330-3 "
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k=2

N
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+ Z<N (k) C W) (6o- Wk - ta-(k) )> + <'M (k) I Ck) ( -(k) 1 2 (k)"O- 12't:,oi c0!- 33 0033 k -yj,' R(k) oh 10 o 3 ,,, .3

kik
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+ Z2t ,3 >(k, + 0 y3 R~ W ' 3 3 R

k- I
+N-1 %3><, +  >k . k k

+ .- k) (k) - + -) -(k) (k) (k) -(~ 3 7Rz ) Ak)V3(k)-Ak33->i 33>Rk

/-, p3 "-ll (Ty3 > R
( k ) '+2<T 3 2 or -y 3 > R

(k ) 
+--,3 22 0'"33 > R(k)

k I

N- I
-(k) (k) -(k-l) -(k) (k) -(k-I) -(k) (k) -k-I)

+ (27p A y3 >RW 21 '3 >R W + <O33 A > (), ,33 I~3 Rk 322"33

k-2

N-2
E j, - (k) -. k-) (k l)
+2 <°233 'A21( -3 R(k) }

k- I

+ 2<' i(-1 ) [A R}, ( N ) + 2<io (), [A(' I) ())>

N
, >RIN) (19

N+ 4 + v-2 .1 S W '93 >. W k5

k 
=  
11 3

+ 2<ar-1), 1 , 3C(1) + 3e32) )' 1--) >

y' 210 3333 2 3333 y' p3'p 
(1)

210 si

N-2

+ - < c .-(k) lt 3 (k) -(k- 1)+ E.D2 y3  140 - tk C 333333qy(O p3,p
k-2

+ _ 3 (k) + t 3  C (k+ l) -(k-l) ,

210 k 3333 k- 3333 'p3.p J

" 2<o---N- 1) t 3 C(N I) , (N -2 ))'
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210"1

Because the mechanical variables M (k) and Q are completely defined by the

constitutive relations (185), (186) and (189), the above specialization has only the field

-- ) -k) -4k).
ariables, V. , t v3  and Or3  The number of field variables, therefore, is 8N,

where N is the number of layers. This is less than the 13N in Pagano's original

theory. Other specializations, allowing for elimination of only some of the terms

containing derivatives of the force resultants, are possible. Alternatively, terms
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containing derivatives of the kinematic 1'ariables can be eliminated using the

self-adjointness of the field operator matrix. The particular specialization described by

(239) was used, in the present research program, to develop finite element solution

schemes for Pagano's theory as well as the assumed-displacement layerwise theories of

laminated composite plates. Detailed discussion of the finite element implementation is

given in relevant items listed in Appendix B.
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SECTION VIII

FINITE ELEMENT STUDIES

8.1 INTRODUCTION.

The theoretical development described in the previous chapters was used to develop

computational models for stress and deformation analysis of laminated composites. The

work consisted of three groups of studies based on the finite element method, viz..

1. Prliminary studies directed towards accurate determination of stresses from dis

placement solutions determined by finite element methods.

2. Elastic analysis of free-edge delamination specimens.

3. Analysis of laminated composites including free-edge delamination specimens

using laminated plate theories.

In this section we briefly describe each of the three components.

8.2 PRELIMINARY STUDIES.

The finite element method for analysis of linear elastic solids, based on

minimization of potential energy using displacement interpolation functions which do

not have continuous derivatives across element boundaries, yields discontinuous

approximation to the stress field. Stresses across interfaces as well as at the surface of

the solid are, therefore, difficult to determine. To ensure stress continuity across

element boundaries, linton and Campbell [1974] proposed a smoothing function

approach. A continuous stress pattern over the entire domain was obtained. Oden and

Brauchli [1971] derived improved stresses based on the theory of coniugate

approximations. However, the determination of- the conjugate functions involved the
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inversion of a rather large matrix. An approximate implementation of the concept,

using consistent nodal averages, was proposed by ()den and Reddy. Zienkiewicz et al.

[1974] proposed use of a least squares procedure with a mixed formulation to arrive at

a continuous stress approximation. Mirza and Olson [1980] studied the performance of

the mixed finite element method. Chang [1981] and Jenq [1982] tried several different

interpolation schemes and found that these procedures were expensive and not always

sufficiently accurate. Moazzami [1984] extended Cook's work [1982] on Loubignac's

method to plane elasticity. This method gave good approximation for stresses but was

quite expensive because of increased bandwidth. Cook and Iluang 11986] proposed that

instead of fitting the average nodal stress to the equilibrium equation over each

element by using Loubignac iteration, an approximate nodal strain that made use of a

finite difference scheme be used. In the present research effozt, a scheme for

calculation of nodal point stresses using the method of undetermined coefficients applied

to the displacement solution from a reliable finite element analysis was considered.

Interpolation between the nodal points would define the continuous field. The method

was applied to several plane elasticity problems for which the exact solutions are

known. A four-point isoparametric quadrilateral element modified to eliminate the

spurious shear modes was used to get the displacement field. Two approximation

schemes, one based on making the formula exact for quadratic polynomial interpolation

for displacement and the other for cubic polynomials, were used. Averaging procedures

based on different selections of the nodal points in any group used for the

determination of the formula were tried. It was found that the procedure could yield

good estimates of stresses even for relatively coarse meshes.

Another study considered the use of higher order elements with continuous

gradients across element boundaries. Such elements were originally introduced by Clough

and Felippa [1968] for analysis of plate bending. Tocher and llartz [1967] extended
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their application to finite element analysis of plane elasticity and showed the

effectiveness of "conforming" elements. In the present research, Tocher and Hartz' work

was revisited. Clough and Felippa's triangular elements were combined into

quadrilaterals. Figure 3 shows Felippa's LCCT-12 cubic displacement triangular element.

The quantities w. and w, denote derivatives of the field variable w with respect to

the spatial coordinates y and z, respectively. Assuming normal gradients to vary

linearly along an edge the midside nodal point on that edge can be eliminated. 'his

results in elements designated as 1CT(-11 or I.(C-9 depending upon whether one or

all three of the midside nodal points are eliminated in this manner. ICCTI-9 is the

element used by Tocher and lartz [1967]. Figure 4 shows quadrilaterals built up from

four LCCT-12 elements and its variants, the LCC-F-l1 and the LCFC-9. These

quadrilaterals are referred to as Q-23, Q-19, and Q-15, respectively. For homogeneous

materials, these elements yielded stress distribution close to zhe exact even for very

coarse meshes. Figure 5 and Figure 6 show finite element models of two example

problems solved. Figure 7 through Figure 10 show the results of the finite element

analyses compared to the Euler-Bernoulli beam theory in one case and a Ritz solution

obtained by Hiremath [1985] in the other. Results from the conventional four-point

isoparametric element, designated Q-4, are also included. In the present research the

Q-23 element was developed for analysis of laminated comrl:,sioes. However, in that

context, it has to be kept in mind that the tractions, and not strains, are continuous

across the inter-laminar boundaries.
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(a) LCCT- 12 (b) LCCT-1I I (c) LCCT-9

(a) Q-23 (b) Q- 19 (c)Q-15

Figure 4: QUADRILATERAL. ELEMENTS: Q-23, Q-19, AND Q-15.
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8.3 ANALYSIS OF FREE-EDGE DELAMINATION SPECIMENS.

8.3.1 Introduction.

Success of the continuous strain finite element model in solving problems of plane

elasticity motivated its extension to the problem of free-edge delamination. Specialization

of the three-dimensional elasticity problem to the case of free-edge delamination

specimens results in three components of displacement depending upon only two spatial

variables. For this pseudo-two-dimensional problem, the continuous strain element can be

used with only minor changes to yield a fully three-dimensional stress state. However,

in the actual specimen, the tractions are continuous at interlaminar surfaces but not so

the strains. The continuous-strain representation would result in discontinuous tractions.

In the present research, this observation led to the development of a continuous-traction

finite element representation. This procedure involves cubic interpolation of the

displacement components over each element and can be quite expensive to use for large

problems involving a large number of layers. The Air Force had previously used an

axisymmetric model to represent a free-edge delamination specimen. This is because an

annulus of large internal radius, subjected to a uniform internal radial pressure of

small magnitude, will stretch essentially uniformly in the tangential direction. Thus, a

small segment along the circumferential direction will be a practically straight coupon

of uniform width under uniform longitudinal strain. In the present research effort,

this procedure was also revisited. The method was extended to include a complete

three-dimensional state of stress by permitting circumferential axisymmetric disp, cement

in addition to the radial and transverse displacements.

In the following sections, we describe the finite element implementation of the

continuous strain and continuous traction finite element analys.s as well as the

axisymmetric modelling of free-edge delamination specimens.
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8.3.2 Continuous Strain Finite Element Modelling of Free-Edge

Delamination Specimens.

For plate bending analysis, Clough and Felippa [1968] used the values of w, the

transverse displacement of the plate, and its derivatives w. and w. as the generalized

coordinates in the finite element representation. For the free-edge delamination

specimen, the displacement field involves three components of displacement dependent

on two spatial coordinates. Thus, nodal values of u, uY, u,; v, vy, v, would be required

in addition to w, w, and w . 1),rivation of the interpolation functions is given in

items B.1.5, and B.3.1 of Appendix B. Figure 11 shows the nodal point degrees of

freedom for the element LCCT-12 for the pseudo-two-dimensional elasticity problem.

Elements of quadrilateral shape can be set up as assemblages of triangular elements as

discussed in Section 8.2. The element Q-23 has 23 degrees of freedom for each

component of displacement. However, the interior nodal points can be eliminated by

static condensation to yield an element with 48 degrees of freedom represented by the

values of the three components of displacement along with their derivatives at the

four corners and the normal derivatives of the displacement components at the four

midside nodes. Application of the procedure to cross-ply and angle-ply free-edge

delamination specimens showed [item B.3.1, Appendix B] that the element could provide

good estimates of stress-distribution over the specimen except for the component ay,

This was because the element could not satisfy the traction-free condition at the free

edges. This was the motivation for the development of the continuous traction

procedure described in the next section.
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8.3.3 Continuous Traction Finite Element Modelling of Free-Edge

Delamination Specimens.

High interlaminar stresses near the free edge are primarily responsible for the onset

of delamination in free-edge delamination specimens. In order to use stress-based

criteria for onset and propagation of damage, it is necessary that a reliable estimate of

interlaminar stresses be available for a given situation. The continuous-strain element

discussed in the previous section is useful for homogenk us materials but cannot give

correct results for layered materials because in these systems, it is the interlaver

tractions and not the strains that are continuous. For the continuous-strain element,

the components of displacement and their derivatives at the nodal points were selected

as the degrees of freedom. Assuming that the interlayer surfaces will lie along

element boundaries, it is reasonable to still use the continuous-strain representation

within the element. However, for connection with the adjoining elements, the quantities

associated with the nodal points should be the traction components. If the y-axis is

parallel to the interfaces in a laminate, the displacement being continuous across the

interface, derivatives with respect to y would be continuous. Thus the derivatives of u,

v, and w with respect to the z-coordinate need to be replaced by the components of

traction on the interface. For nodal points located on the interfaces corresponding to z

= constant, the components of traction equal the stress components (T., 0,,,, and o. For

midside nodal points and nodal points on other inter-element boundary orientations, the

components will equal the stresses On,,, On,, and orn,. This requires a transformation

relationship between the degrees of freedom to be used for "global" assembly and those

to be used for "local" or intra-element interpolation.
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8.3.3.1 Transformation for the Corner Nodal Points.

The stress-strain relationship for an orthotropic material with reference to the

cartesian reference frame described by x,y~z axes is:

e, CII C12 C 13  0 0 C1 6 o,

eyy C21 C22 C23 0 0 C26 yy

ezz - C 31 C 2 3 C 3 3 0 0 C 36  ozz (240)

,Yvz 0 0 0 C 44 C45  0 oY

'Y Z. 0 o 0 C 54 55 0 z.

x"Y C61 C62 C62 0 0 C 66 (TxY

Here (-,j are components of the compliance tensor, written in the reduced notation, for

monoclinic materials with symmetry with respect to the x-y plane. These components

are related to the material compliance coefficients C through the following

relationships:

C = C m 4 + (2C + C )m 2n 2 +C n4

I I 11 12 66 22

C t2 = (C I I + C 22 - 2C 12 - C 66 )m 2n 2 + C 1 2

3 = C 13
m 2 + C23n2

C 16 = [2Cm n 2 - 2C 22n2 + (2C12 + C66)(n2 I m 2)]mn

16 1 22 2 66

C 22=Cln 4 +(2C 2+C 66)m
2 n 2+C 22n 4

C 23  C13n
2 + C 23mI

S26 = [2Cs n2 - 2C22m 2 + (2Ct2 + C,66 Xm 2 - n2)mn (241)

C3 3 = C 3 3

C3b = 2(C 1 3 - C 2 3)mn

C4 4  C4 4 m
2 +C 5 5 n

2

C45  (C44 + C55 )mn

C5 5  C 4 4 n 
+ C',.Sm
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C 66 = 4(C I + C2 2 - 2C 2 - C 66)m 2n2 + C66

where

-- 1, C 12 = -  1 ,  C 13 = -- 1

Ell E 22 E 33

C 112 C2 2 2 2 C V2 3 = 23 (242)
E 2 E1 22 33

SE C44 , C55 - 1 , C66 012

and m = cos 0, and n = sin 0. Here 0 is the angle between the ply orientation (the

material 1-axis) and the system x-axis. EW, G'J, vjI are moduli of elasticity in

extension, the shear moduli, and Poisson's ratios in material coordinates.

Replacing the strains by appropriate expressions in terms of gradients of

displacement components, allowing for the special case of derivatives along the

longitudinal axis (the x-axis) being zero, (240) gives:

=C D 21 (243)
2 2 D2 2

where

U W
Xz

e , V , E) = wY + v z  (244)

U U
Y Z

X Z

Y'"1) Cy I 2 (245)

Cr 0.

and

S1 1 16 13

[DI]= 11 2  22 C 2 6 , [D121- I 23 00 (246)

16 26 66 36 0
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[ 13 23 361 3 0 o

[D2= 0 0 ,[D]= 0 C4 4 C4 S (247)

000 0C45 C5

Elimination of {o"1} between the two equations in (243) gives

IF-) = [Ce] o, 2)  (248)

where

{f}E = { 2 } - [D21] I[D1 ]-{ 1 } (249)

IC') = [D 22]- [D2 1 ] [Di l]-[D 21 (250)

Explicitly, (248) is:

w,- B u - Bv-Bu 3- x o0 ar

w 4 C 45 0'y (251)
u lo C 45 55 xz

where

BI _ + 1 1 1 +C 2 3 1 2 + C 3 6 16  (252)

B2 = c 13 2 1 2 + C 2 3 0 2 2 + C 3 6 Q26  
(253)

B3 = c 13 0 16 + C2 30 26 + C3 6 Q66 (254)

X=Bc 1 3 +B223 +B336 (255)

Q . = Q, m 4 + 2(Q 1 2 + 2Q 66 )m 2n 2 + Q2 2n4

Q 12 
= (QII + Q2 2 - 4Q6 6)m 2n 2 + Q 12(m

4 + n4 )

0 16 = mn 3Q22 +m 3 nQ 1 - mn(m2 - n 2XQ 12 + 2Q6 6) (256)

022 
= Q,, n + 2(Q 12 + 2Q6 6)m 2n 2 + Q22 rm 4

o26 = m 3nQ 22 + mn 3Q1 I + mn(m2 -n 2)(Q12 + 2Q 66)

i66 = (Q1I + Q22 - 2Q12)m2n 2 + Q6 6(m 2 -
n 2 ) 2

and

E22 1 12 E Q66 = G (257)
Q11 21 V12 --22121121 12 V21
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Solving (251) for u2, v2, and w, in terms of the remaining quantities gives the

following transformation from the global degrees of freedom, which include components

of traction at the nodal points, to the displacement degrees of freedom which are used

to describe the variation of displacement within the element:

U 1000 0 0 0 0 0 0

V 010 0 0 0 0 0 v 0
w 001 0 0 0 0 0 0 w 0

0
uy 0 0 0 1 0 0 0 0 0 UY 0

Vy 0 0 0 0 1 0 0 0 0 vY + 0 (258)

w 000 0 0 1 00 0 w 0
Y Y

u 03

u 0 0 00 0-I)C 55C 45 0 0
z yz

w z  0 0 0 B3 B2 0 0 0 C - x BeO
2 zz

8.3.3.2 Transformation for Midside Nodes.

The transformation from stress components normal to the element boundary at the

midside points and the normal displacement gradients used for interpolation within the

element is:

un nx
ITY' Tonn[ -IT,] ' IT2] I r'} 3 -[TF' {T3} (259)

w (n 14i3  ns i- 3

Here

m2s 6 6 + n2s 5 5  m2S 2 6 + n2S4 5

[T ]= s S 2 6 + mn 2s3 6 + 2mn 245 m3s 2 2 + mn2S 23 + 2mn2 44

1(936- $26 ) M 2n + ( m 32 n - n3 45 (923 - 922) m 2n + (m 2 n -n 3)s44

(nS4 +S 36 )mn

2m 2ng 44 + m 2 nS2 3 + n 3S 33  (260)

(m 3 - mn 2 )S 4 4 +( (33 -5 S23
) r n 2

fu' I {uV, w , u IV , k, ,0"7 ,C ,o" III N ,w., ,v ,V w Io ,o" -o (T} _ x ) (261)
y, 3 y J j yJ z2J k' k' k' Yk Yk Yk \zk YZk zk
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2-S45 mn B1 -- S 3 6 m-BI + mS 1 6- 2 2 ~~g

{TI= $44m 2nB -- 2(MS + m2n2s )B + m2 +nS e (262)
3, 44 1 2 23 33 1 12 13 0

44 (m 3n-mn 3)B I--s (3-3 2 3 )m 3 nB+ (S13 -s12 )mn

and

[T2 1, = [TA] [TB] (263)

where

ms 66 MS, 6  nS 4 S nS.

[TA]= m 2S, + n S36 m2,, + n 2 3  2ninS4 4  2mn5n4

6 2 2 3 44 4
1(536 -S 26) ra n (S,23 - s$22

) ra n ( m 2 
_ n 2)S 44 ( m 2 

_ n 2)s4i

nS 4 5  mS 3 6

2mnS44 m2s23 + n2533 (264)

(m2 - n 2)s44 (S - s23)mn
2

3n 0 0 2 mnC anC
21. 0 0 4 4s 4 5 0

4 m4

B n mn (n

on an B3 -2 n33 X)
21. 4 4 2 44

IITB] 2 2
3m m-m e -m---C453_J m 0 0 an 0 4 Mssm A

21, 4 4

414 4 55 42 2 2
() 0~ mn m _r m( mC

2-l-" - 4 "4 4 45 o

m2 2- - '3 X

0 0 3 1 mnB3 .. B 2  m m (3
211 4 4 4 3
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3nmn mnoo 0 0 o- -C 5  4 0
21 44

221 3n 0 0 n an n C s  Mn 4,

o o - ~ mn ~LB n2 ~
213 43 42 -S 4 4 3

2(265)
mn ~ ~ n B L

2  
n 3

21 1 4 4 4 ' 4
21j 44 4

0 3m 0 mn m2  2 2

21 4 4 4  54s 4 44  0
2 2 2

o 0 3m -m 2  3 M2 B 2 mn 0 0 --(C33 - X)
21 4 3 2 4 o3

b. a. 2
m---, n=---L, ai=yk-yj, bi = z  zk, 1= 4 + b (266)

y,.z I are the coordinates of the corner nodal points of the triangular finite element and

S,1 are elements of the material stiffness matrix [S which is inverse of the compliance

matrix [C] with elements Cj.

8.3.3.3 Traction-free Boundary Conditions.

The traction-free boundary conditions for one quadrant of the free-edge

delamination specimen are:

oix,(y, H) = crYz(y, H) = O-zz(y, H) = 0 (267)

at the top surface along with

Ocyy(B, z) = O-xy(B, z) = o'zy(B, z) = 0 (268)

at the lateral free edge. Here 2B and 2H are the total width and the total thickness

of the specimen. The Q-23 element has the tractions at the top surface included in the

list of field variables for the finite element model. Therefore, these conditions can be

explicitly satisfied simply by specifying the values at the nodal points located on the

top surface. Similarly, for the midside nodal points on the lateral free edge, the

tractions are field variables for the finite element model and their values can be

specified directly. At the corner points of the elements, the component a, can be
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directly specified. However, the components cr. and cry have to be specified as linear

constraints on the problem. Expressing these in terms of the kinematic variables, we

have:

O'yy = o = 
1 2 eo + 23wz w+ 22Vy v+ 26Uy (269)

xy = 0 = S16eo + S36 Wz + S26 vy + 66 Uy (270)

Solving for vy and u. in terms of the remaining quantities:

y 2-|1 122 e0  (271)
Uy 2

where

1 11 -L(g26 -16 S66 S12

a -~ 22

12 1(26 36- 66 23 (272)

21 a 26 12- 22 16

22 26 23- 22 36

and

22 66 26 (273)

Using (251) to write w. in terms of a,., (271) can be incorporated into the

transformation (258).

8.3.4 An Axisymmetric Model.

8.3.4.1 Introduction.

A computer program previously used by the Air Force to model free-edge

delamination specimens was applicable to an axisymmetric configuration. The model

assumed the tangential shearing strains to be zero i.e., the deformation is purely radial

and/or axial. It was based on the use of a bilinear Lagrange interpolation or optional
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use of a reduced integration procedure proposed by Singh [1977] and Sandhu and Singh

[1978). In the present research, the program was enhanced to include "twist" in the

analysis. The enhanced version has the capability, which the earlier version lacked, to

model the complete stress state in angle-ply specimens. Herein, we give an outline of

the theoretical development. Details are available in items B.1.6 and B.1.7 of Appendix

B.

8.3.4.2 The Axisymmetric Model.

The equations of equilibrium, in cylindrical coordinates, for linear elastic

deformation, are:

1A 0 1 0 10 A 0
r Or r r 8 O zz -f

r

S-0 0 +  -fz (274)
8z r 00 r Or 0- (274

o 0 o a -
rOa9 Oz r Or O

G'rzj

The strain-displacement relationships in cylindrical coordinates are:

& 0 0
Or

Err 0 0 0

6 z
zz1 U

0 r T 0 Uz (275)

r O0 az 0
i '0,

Y rz 7 0 Or r

az Or

where, r, z, and 0 are, respectively, the radial, the axial and the tangential coordinates.

u,,u,, and u6 are the displacements corresponding to the three coordinate axes. For

axisymmetry, all quantities are independent of 0, and the equations (274) and (275)

reduce to

I 0



0'
rr

1+1o o 0 O
r -r r 8z ZZ(

0 _- 0 0 0 += - (276)
az r Or o'z

0 0 0 JL 2 + -1 oo
Oz r Or

'

Or
4Err 0 a 0

Ezzi OZ~

e,=r U(277)ZZ u

rz 0 0 1~

'rzOr r
0 0 o

Oz Or

These stress-strain relations need appropriate transformation from the material to the

local axes and then, if necessary, to global axes. For cylindrical systems the local and

global axes, in general, coincide.

8.3.5 Computer Implementation.

The schemes described in Sections 1.3.3 and 1.3.4 were implemented in finite

element computer programs. The codes were verified by application to Pagano's problem

[1978] and then applied to analyze stresses and deformations in selected 22-layer

delamination specimens.
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8.3.5.1 Continuous Traction Finite Element Analysis.

The finite element discretization of a quadrant of the cross-section of a free-edge

delamination specimen is shown in Figure 12. Each layer was modelled by four

sublayers. In the transverse direction, the elements were of width B/1O in the middle

part and B/50 for the ten elements nearest the free edge. The cross-ply specimen was

[0/901] and the angle-ply specimen was [± 45]1. Comparison of results from the con-

tinuous traction model with Pagano's theoretical solution is given in Figure 13 through

Figure 20. The agreement is excellent.

The program was also used to solve a 22-layer problem. Several different layups,

for which test data were available, were examined. Details are given in items 1.1.5 of

Appendix B. Here, we show the results for [(±49.8),/90i specimen. Figure 21 shows

the finite element model used for one quadrant of the specimen. Figure 22 shows the

distribution of o*= along the mid-plane of the specimen in the vicinity of the free

edge. The "constant strain element" denotes results of a pseudo-two-dimensional finite

element analysis, ignoring o-,, and a., and using Q1 elements, reported by Sandhu and

Sendeckyj [19871. Through-the-thickness distribution of a. and o.., at the free edge is

shown in Figure 23. The plot shows considerable irregularity in the distribution of

a,,, at the free edge. Figure 24 shows the influence of distance from the free edge on

through-the-thickness distribution of or. The irregularity in stress distribution is

confined to the free edge and the distribution is much smoother even a short distance

away ( X = 0.995) from the free edge. The distribution of o, at the free edge was
B

carefully examined by refining the mesh in the vicinity. Finite element models, based

upon refinement along each of the y and the z axes and along both the axes, were

used. Along the y-axis, the refinement consi'ted of subdividing each edge element into
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144 (8x18) F. E. Mesh - Continuous Traction Analysis

Figure 12: FINITE ELEMENT MODEL OF FREE-EDGE DELAMINATION SPECIMENS.
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Figure 13: D)ISTRIBUTION OF X-STRESS ALONG CENTER OF TOP LAYER (45
DEGREES) IN A [45/-45] SYMMETRIC LAMINATE.
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oCONTINUOUS TRACTION
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Figure 18: DISTRIBUTION OF Z-STRESS ALONG 0/90 INTERFACE OF A [0/90]
SYMMETRIC LAMINATE.
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Figure 20: TRANSVERSE DISPLACEMENT ACROSS THE TOP SURFACE OF A
[0/90] SY'mmErRIC LAMINATE.
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Figure 21: FINITE ELEMENT MODEL OF 22-LAYER DELAMINATION SPECIMEN.
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Figure 22: DISTRIBUTION OF Z-STRESS ALONG MIDPLANE OF 22-LAYER
DELAMINATION SPECIMEN.
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four. Along the z-axis, refinements only for the 90-degree ply near the midplane of

the specimen as well as for all the layers were carried out. Selected results are

plotted in Figure 25 and Figure 26. Refinement along the z-axis over the 90° layer

improved the solution over that layer without much change in the stress patterns

elsewhere. Refinement over the y-axis, on the other hand, improved the results over

the layers other than the 90* layer with little effect on the stresses in that layer. To

improve stress so'2:ion all along the free edge, it was necessary to refine the mesh

along both the axes. Figure 27 and Figure 28 show plots of the through-the-thickness

variation of o-,, at I-= 0.99. Refinement of the mesh has little effect on the stress

B

distribution at this location. Thus, the influence of mesh refinement is entirely

confined to the immediate vicinity of the free edge.

Figure 29 shows the variation of o'y along the center of the 90-degree layer for a

distance of eight ply thicknesses from the free edge.

The computer program is quite efficient. For the 154-element mesh with 513 nodal

points, the total number of algebraic equations was 2311 with a band-width of 186.

The execution time for this case was 121 seconds on an IBM 3081 mainframe

computer.
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8.3.5.2 The Axisymmetric Model.

For the axisymmetric model, the modified four-point isoparametric element was

used. The modification, introduced by Doherty et al. [19691 and Zienkiewicz et al.

[1972] consists of evaluating the contribution of shearing strains to the energy using

one-point Gauss quadrature. This amounts to -.he assumption of constant shearing strain

in the element. Use of this "selective" reduced integration procedure has been found to

give better estimates of stress in thin-valled structural systems. Comparison of this

procedure with Sandhu and Singh's [1978] reduced integration scheme showed that the

results from the two analyses were comparable but the "selective" scheme was the

more economical in computational effort. To ensure uniformity of extensional strain

over the delamination specimen, different values of the internal radius of the annulus

were tried. It was found that using an internal radius exceeding 104 times the

thickness of the specimen would give essentially uniform tangential strain in the

annulus corresponding to uniform extension in the specimen.

Figure 30 shows the correspondence between the free-edge delamination specimen

and a segment from a large-radius ring under radial pressure. A 576-element mesh

shown in Figure 31 was used to model the delamination specimens analyzed by Pagano

[1978]. It should be noted that, for the model used, the complete thickness of the

laminate has to be modelled instead of the half-thickness used in the continuous

traction element analysis described in the previous section. Comparison of results from

the axisymmetric model and the continuous traction element analyses showed that the

numerical results were in close agreement while the computational effort was much

smaller for the axisymmetric model which uses a lower order element. Of course, for

comparable accuracy, a finer mesh would, in general, be required for the simpler

model. As an illustration, Figure 32 shows through-the-thickness distribution of a,,, at
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(a)

(b) z in (a) - y in (b)
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Figure 30: CORRESPONDENCE BETWEEN THE FREE-EDGE DELAMINATION
SPECIMEN AND A SEGMENT Of- AN ANNULUS.
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Figure 31: FINi FE ELEMENT MODEL OF THE AXISYMMETRIC PROBLEM.
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Figure 32: THROUGH-THE-THICK NESS Z-STRESS DISTRIBUTION AT Y/B = .99
FOR THE [0/90] SYMMETRIC L.AMINATE.
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0.99 for a cross-ply specimen over half the thickness, using 8 equal subdivisions
B

over the thickness of each layer and 18 elements over half the width as shown in

Figure 31. Similar plots for the stress component a-,, at - = 0.99 are shown in
B

Figure 33. Figure 34 through Figure 36 show the through-the-thickness variation in

stress components oxT., o-., and o, respectively, for the four-layer [±451 specimen at

the plane v -=0.99 The results shown were obtained using 1152 elements for the
B

axisymmetric model (complete cross-section) and 166 elements for the continuous

traction model.

The procedure was applied to a 22-layer delamination specimen for which test

data were available. Several mesh refinements were used. Figure 37 shows the finite

element mesh used to get the plots - Figure 38 and Figure 39 - showing

through-the-thickness distribution of o-. and o-Y. at 1=0.995 for a [(±25),/901
B

delamination specimen for the axisymmetric model as well as the continuous traction

model discussed earlier.

126
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Figure 33: THROUGH-THE-THICKNESS YZ-STRESS DISTRIBUTION AT Y/B = .99
FOR TIE [0/90] SYMMETRIC LAMINATE.
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Figure 34: THROUGH-THE-THICKNESS DISTRIBUTION OF XZ-STRESS AT Y'/B
.99 FOR THE [45/-451 SYMIMETRIC L-AMINATE.
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Figure 35: THROUGH-THE-THICKNESS DISTRIBUTION OF Z-STRESS AT Y/B = .99
FOR THE [45/-451 SYMMETRIC LAMINATE.
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Figure 36: THROUG1--ThE-THICKNESS, DISTRIBUTION OF YZ-STRESS, AT Y/B
.99 FOR THE [45/-451 SYMMETRIC LAMINATE.
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8.4 ANALYSES BASED ON LAMINATED PLATE THEORIES.

8.4.1 Introduction.

A more general approach to the problem would be applicable not only to free-edge

delamination specimens but also to plates of general configuration. For the present

research effort, this involved implementation of appropriate theories of bending and

stretching of laminated composite plates. To start, the existing layerwise theory of

laminated plates was implemented in a finite element computer program. Limitations of

this theory were immediately noticed, and subsequent research effort was directed

towards development of comprehensive theoretical basis for the constitutive and

variational theory of laminated composite plates and its implementation in finite

element computer models. The theory has been described in Sections IV through V1I. In

this section we summarize the finite element implementation and list some results.

8.4.2 Discrete Laminate Theory.

Mawenya and Davis [1974) proposed a general finite element formulation using

quadratic isoparametric multilayer plate elements. However, they did not give details of

their theoretical and numerical formulation. In the present research program, the

existing theory of laminated plates was restated in a self-adjoint form and implemented

in a finite element computer program. The program is capable of using the bilinear

isoparametric interpolation as well as biquadratic Lagrangian or 8-node serendipity

interpolation. Details of this investigation are given in item B.1.1 of Appendix B.

Figure 40 shows the three element types available in the program. Application to

sandwich as well as homogeneous plates showed very good performance in modelling

deflections. However, results for or,,, o,,,, and o'y were quite inaccurate near the free

edge. It was found that refinement of mesh over the thickness resulted in

improvement in stress predictions while refinement in the y-direction did not have a
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Figure 40: FINITE ELEMENT INTERPOLATION SCHEMES USED FOR DISCRETE
LAMINATE THEORY.
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significant effect. This was specially noticeable near the free edge. Figure 41 shows

the sequence of refinement of the model along the z-axis i.e., over the thickness of the

specimen. Figure 42 and Figure 43 show influence of refinement upon o. and (ry,

along the interface of a [±451 specimen.

8.4.3 A First Order Theory.

The first order theory for constitutive relations for force resultants in laminated

plates described in Section IV was written in a self-adjoint form, appropriate

variational formulations were developed and a specialization was implemented in finite

element computer program. Items B.1.2, 11.1.3 B.2.3, B.2.4, B.2.6, B.3.3 and B.4.2 give

details of the investigation. The finite element implementation used Hughes' [19781

Ileterosis element shown in Figure 44. The traction-free boundary condition could not

be explicitly satisfied because the interlaminar tractions had been condensed out of the

constitutive equations. This condition could be introduced as specified tractions in the

constitutive theory. This would make the constitutive relations different at the surface

and in the interior necessitating the assumption of a pattern of variation from the free

edge towards the inside of the specimen. Numerical results from the analyses showed

that the influence of the shear coupling indicated by the theoretical investigation was

not significant. This was probably because the theory is first order, based on the

assumption of e, =0, and ignores the coupling between the other force resultants. The

numerical results practically coincided with those from the discrete laminate theory

which did not allow for the constitutive coupling. It was noticed that refinement of

each layer into sublayers resulted in noticeable improvement in the solution. Figure 45

and Figure 46 show the results for subdivision of each of the two layers in one-half

of a [±45]1 free-edge delamination specimen into three and five sublayers. This

remarkable improvement with refinement was the motivation for the search for a

higher order theory.
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8.4.4 A Higher Order Theory.

Investigation of the existing discrete laminate theory and the first order theory

showed that refinement over the thickness of the laminate resulted in improvement of

accuracy of the predicted stresses. This was the motivation for the development of

higher order theories described in Section VI. A specialization of the higher order

theory to the free-edge delamination specimens was implemented in a finite element

computer program using cubic tHermite polynomial interpolation for all the field

variables. The solution showed rapid convergence with refinement of the mesh. Even

very coarse mesh (six elements over the entire width of the element) gave reasonable

results for four-layer cross-ply and [_t451 angle-ply specimens.

8.4.5 Pagano's Theory.

Pagano's theory as restated in Section VI was implemented in a finite element

computer program using Heterosis elements. Application to Pagano's problems [1978 of

four-layer cross-ply and angle-ply specimens showed excellent agreement. The procedure

was then applied to a 22-layer free-edge delamination specimen [(+±25.5),/90]j. For a

rather coarse 64-element model shown in Figure 47, the results for o'. along the

midplane and along the free edge are plotted in Figure 48 and Figure 49. The results

agree very well with those from the axisymmteric model described earlier.
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SECTION IX

DISCUSSION

For analysis of stresses and deformations in a free-edge delamination specimen, the

continuous traction cubic interpolation finite element, with appropriate refinement of

the mesh in the vicinity of the free edge and interfaces, will yield reliable predictions.

The representation by a segment of an annulus does not give continuous tractions but

is much more economical in computational effort required to obtain the solution. Even

the pseudo-two-dimensional representation ignoring or,, and o-x, gives reasonable accuracy

except near the free edge.

Existing theories of laminated plates, including the discrete laminate theory, cannot

allow for the traction-free edge conditions. Thus, they are not useful for delamination

prediction even though they are adequate for representation of gross behavior like

deflection under load or frequency of vibration. Coupled constitutive theory, allowing

for the shear coupling between layers, is mechanically consistent and independent of

the need for ad hoc correction factors. However, it too cannot properly model the

stresses in the vicinity of the free edge and the interfaces between plies. The higher

order theory, developed during this reasearch program, based on quadratic variation of

cr., over the thickness of each layer or sublayer along with use of consistent

constitutive relationships, gave reasonable accuracy even for coarse meshes (six elements

over the entire width of the delamination specimen). The computer program has been

written for a specialization of the theory to free-edge delamination specimens. To solve

the problem of an arbitrary plate configuration involving free edges, further work on

development of a comprehensive computer program would be necessary. Finite element
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implementation of Pagano's theory shows that this theory, based on the sole assumption

of linear variation of the in-plane stresses over each layer, is capable of yielding

accurate estimates of stress and deformation throughout the laminate. As the laminae

can be subdivided into as many sublayers as desired, it should be possible to set up

sequences of solutions converging to the correct solution. However, this procedure is

quite expensive in computational effort as well as storage requirements. An alternative

solution procedures for this formulation, based on reduction of the problem of

determining roots of the characteristic polynomial to a matrix eigenvalue problem,

appears to hold good promise of combining accuracy with economy of effort and

extending the application of Pagano's theory to multi-layer laminates.
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Appendix A

VARIATIONAL FORMULATION

Often, obtaining an approximate solution to coupled boundary value problem relies

on appropriate variational formulations. Following Sandhu's [1970, 1971, 1975, 1977]

extension of Mikhlin's [19651 basic variational theorem to coupled linear boundary

value problems including nonhomogenous boundary conditions, we present a summary

of the basic concepts for setting up the variational formulation applicable to the

problem of laminated plates.

A.1 PRELIMINARIES

A.1.1 Boundary Value Problem

Consider the boundary value problem

Au = f on R (A.1)

Cu = g on OR (A.2)

where aR is the boundary of the open connected region R in an euclidean space. R is

the closure of R. A and C are the linear bounded operators. Let VR and V., be

linear vector spaces defined on the regions indicated by the subscripts, and WR,WoR be

dense subsets in V. and V,,, respectively. Then the differential A and C can be

regarded as the transformations

A:W -. V R  (A.3)

C: W 8R 
1R
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A.1.2 Bilinear Mapping

Let V and S be linear vector spaces. A bilinear mapping B: VxV- S assigns to

each ordered pair of vectors u , v E V an element in S. Furthermore, bilinearity is sat-

isfied for u 1 ,u 2 ,v,v 2 ,u,vEV, if

B(au + u,v) = a B(u ,v)+ B(u2,v) (A.4)

B(u, av i + v2 ) = aB(u, v ) + B(u, v) (A.5)

where a is scalar. For convenience, we shall use the notation

B R( U v ) = < u'v > R (A.6)

To set up a variational formulation, symmetric, nondegenerate bilinear mappings are

used, i.e.,

<u v>R <vu> R (A.7)

and

<uv> R =0 for all v if and only ifu=O (A.8)

A.1.3 Self-Adjoint Operator

An operator A* on V is said to be the adjoint of A with respect to symmetric

bilinear mapping BR VxV- - S, where S is a linear vector space, if

<u,Av > R = <vAu> R +1D R(vu) (A.9)

for all u and v E V and where l)dR(u,v) represents quantities associated with bound-

ary 6R of R. If A= A%, then A is said to be self-adjoint. If A is a self-adjoint opera-

tor, then DaR ( v, u ) is antisymmetric, i.e.,

D 6R(v,u) = -D8R (u'v) (A.10)

Furthermore, A is said to be symmetric with respect to the bilinear mapping if,

< u,Av > R = < v A u > R (A.1 1)

The boundary operator C is said to be consistent with the self-adjoint operator A if
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D OR(v'u) = < uCv > OR- < v ' C u > OR (A.12)

A.A Gateaux Differential

If fl:V - S, where V is such that if u, U EV, u+ X UEV for scalar X, the Gateaux

differential of a function Q along the path G is defined by

8 f((u) = lim 0 (U + XU) (U) (A. 13)

where U is referred to as the path.

A.2 THEOREM

For the field equations (A.1) we define

n!(u) = <u,Au> R-2<uf> R  (A. 14)

The Gateaux differential of f) is:

8 0 (u) =m <u+ XU,A(u+ Xt)> -2< u+X X,f> - <u,Au> +2<u ,f> (A. 15)

<u,AU> + <U,Au>-2 <U,f>

= 2 <U,Au-f>

The Gateaux differential vanishes at the solution u = u. where Au. - f = 0. Conversely,

if S j)(u) vanishes for all U, nondegeneracy of < , > implies Au 0-f = 0. If the

range of the bilinear mapping is the real line, vanishing of the function fl would

imply its minimum, maximum, or stationary value, depending upon the operator A

being positive, negative or semi-definite.
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A.3 LINEAR COUPLED PROBLEMS

The above discussion for a single-valued function u can be extended to the case of

several variables. If there are n variables, V is defined as the direct sum

V=V 1 +X .. + .... .. + V (A.16)

and an element u E V is an n-tuple (u,,u 2 ...... u') with u, E V, for i=1, 2, .... , n. A

bilinear mapping on V is defined as

< u vv > = <u11 v I> RI + <U ,'>R2+. ...... + <UtVn>Rn (A.17)

where < ,> R is defined for components u,v, of {u *v,} respectively.

If the field equations and the boundary conditions for a linear coupled boundary

value problem are:

n

Aiju .= on R (A.18)
j=lI

n

E Ciju = gi on OR i=1,2,.,n (A.19)
j= I

the governing functional based on Eqs. (A.18, A.19) is

n n n n
l(u) = L <u,LA.u.-2f >. + E <u,' Cu.-2gi >0 (A.20)

i=1 ji I i jil

The set of operators A,, is said to be self-adjoint with respect to the bilinear mapping,

if

n n

<v, A, u> 5 = <u,,A v > R +D (u ' v.) (A.21)
j~l j R -I

where DaR(Uj,v,) represents quantities associated with boundary OR of R. The boundary

operator Cu are said to be consistent with the set of field operators Au if

-) R (U >- vTC > > (A.22)

Ru. =, <u.jI <16
JI I I
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